Celkem 108 milionů dolarů (cca 2,3 mld. korun) získala od investorů společnost Heliogen, která chce uvést do praxe první dostupný systém na výrobu tepla ze slunečního světla pro výrobu elektřiny. Má být levnou variantou například nejen pro produkci tepla, ale také výrobu elektřiny, či vodíku.

Ovšem právě možnost produkce bezuhlíkového tepla vysvětluje zájem některých investorů. Mezi ně se kromě některých tradičnějších rizikových investorů zařadil také ArcelorMittal, přední světová ocelářská a těžební společnost.

Jak to funguje

Heliogen byl založen již v roce 2013, ale veřejně se o něm začalo intenzivněji mluvit v roce 2019. Tehdy si získala pozornost tiskovým prohlášením, ve kterém nezapomněla zmínit, že mezi prvními investory do společnosti byl i Bill Gates. Díky němu jsme se dozvěděli o technologii Heliogenu více.

Firma se věnuje oboru, který není podstatou nijak nový: vývoji solárně-termálních elektráren. To jsou zařízení, ve kterých zrcadla soustředí odrážené světlo do jediného místa, z praktických důvodů na vyvýšeném místě, charakteristické věži uprostřed elektrárny. Vznikající teplo pak slouží k vytváření páry pohánějící turbínu. Heliogen se od jiných systémů liší ovšem v jednom důležitém ohledu, totiž dosažené teplotě. V roce 2019 společnost uváděla, že na „terči“, kde se soustředí paprsky odrážené zrcadly, tepolta těsně přesahovala 1 000 °C. Od té doby se mluví až o 1 500°C.

Při takových teplotách by se podle firmy dá uvažovat o efektivní a levné výrobě syntetických paliv. Myslíme konkrétně rozklad vody pro výrobu vodíku. V souvislosti s Heliogenem mluví nejčastěji o produkci tzv. syntézního plynu, tedy směsi vodíku a oxidu uhelnatého (CO), která může také posloužit jako náhrada řady fosilních paliv. Výchozími surovinami by byl oxid uhličitý a voda.

Koncept solární termální elektrárny společnosti Heliogen (foto Heliogen)
Koncept solární termální elektrárny společnosti Heliogen (foto Heliogen)

Jinak řečeno, postup by pak mohl sloužit k ukládání energie z obnovitelného zdroje do dobře skladovatelné podoby klasického paliva pro pohon motorů či turbín. Ovšem podobně jako v případě technologie výroby paliv z CO2 zachyceného ze vzduchu, o kterém jsme psali před časem, podobná technologie by v blízké budoucnosti mohla dávat finanční smysl pouze za specifických okolností, kdy běžná paliva budou znevýhodněna například zatížena uhlíkovou daní.

Firma toho ho dosáhla nasazením velmi přesného řídícího systému zrcadel. Kolem cílové plochy na věži jsou umístěny čtyři fixní kamery zaostřené každá na jiný pomyslný bod. Počítač vyhodnocuje v reálném čase, zda a jak se odraz mění, a podle toho určuje nastavení zrcadel. Šéf Bill Gross na serveru Vox tehdy řekl, že kamery nesledují přímo zrcadlo, ale zaostří na čtyři různé, ale stejně vzdálené body vedle zrcadla. Poté se jejich obraz vzájemně porovná, a pokud se na obrazu všech kamer objeví stejná „stopa“ rozptylu světla v atmosféře, tak je zrcadlo správně nastavené. Pokud ne, software určí nutnou korekci. Systém dokáže udržet paprsky zrcadel soustředěné na oblast o průměru zhruba 50 centimetrů.

Společnost je tedy stejně tak energetická, jako softwarová. Počítačová analýza obrazu se softwarovým inženýrům dlouhá desetiletí nedařila, změna přišla v posledních méně než 10 letech. Heliogen tvrdil, že cca před rokem 2015 neměli k dispozici prakticky použitelný systém, který by mohla firma využít. (V astronomii se používal přesnější systémy i v dříve, ale možná pro Heliogen byly až příliš “prototypové” a málo robustní. To je ovšem z naší strany spekulace.)

Kam s ní

Zvyšování teploty přitom má podle Heliogenu rozšířit možnosti využití solární energie k jiným účelům než výrobě energie. Zpráva konkrétně zmiňuje výrobu stavebních materiálů, v tisku se často objevovaly zmínky o možném využití při výrobě oceli. Má to ovšem svá omezení.

Z pohledu některých zmiňovaných aplikací (výrobu oceli či stavebních materiálů) je nevýhodou omezená pracovní doba zdroje. Tavicí pec či výrobu stavebních materiálů, která bude fungovat pouze část dne není z dnešního pohledu příliš praktická. Samozřejmě, teplo lze do jisté míry akumulovat či doplňovat z jiných zdrojů, ale to vše zdroj samozřejmě prodražuje.

Solárně-termální elektrárna pracuje jen na přímém slunci, a prakticky tedy jen na suchých a slunných místech (například ve Španělsku ano, u nás prakticky vůbec). Ostatně své o tom ví i zakladatel Heliogenu, již zmínný Bill Gross. V roce 2007 založil Gross společnost eSolar, která fungovala do roku 2016, a také se pokusila o rozvoj solární elektrárny soustřeďující světlo z mnoha zrcadel do jednoho bodu. Základní nápad byl také stejný: vzít poměrně levná zrcadla, ale vybavit je velmi dobrým řídícím systémem.

Solární termální elektrárna (foto Heliogen)
Solární termální elektrárna společnosti eSolar v nevadské poušti před demolicí (foto Heliogen)

Společnost eSolar dotáhla svou elektrárnu až k praktické demonstraci. V roce 2009 spustila v Kalifornii solární elektrárnu o výkonu 5 MW (stojí poblíž města Lancaster, tedy zároveň nedaleko od zkušebního provozu Heliogenu). Elektrárna se skládala ze dvou „jednotek“, tedy de facto dvou věží, kolem kterých stálo celkem 24 tisíc zrcadel. Světlo se soustředilo poblíž vrcholku věží, kde v potrubí vytvářelo páru pohánějící připojenou turbínu.

Jak se ovšem ukázalo, v praxi bylo zařízení ekonomicky neudržitelné. Podle údajů, které provozovatel nakonec po naléhání některých zájemců a aktivistů zveřejnil, pracovala elektrárna minimálně v prvních letech provozu zhruba čtyři až pět dní v měsíci, a to pouze během poledních hodin. Proč ne každý den, když oblast je velmi slunná a jasno je většinu roku? Dalo by se spekulovat, že provoz se vyplatil ve dnech, kdy byla cena elektřiny na trzích zvýšená.

Mezi červencem 2009 a 2010 vyrobila cca 552 megawatthodin (MWh), odhady před zahájením provozu, na jejichž základě se dělala i ekonomická analýza, uváděly odhad výroby zhruba 4 300 MWh. A nebyly to vlivem „dětských nemocí“ – během následujících dvanácti měsíců byla výroba prakticky totožná, cca 539 MWh. V roce 2015 tak byl provoz ukončen a elektrárna postupně rozebrána. Věže například zmizely v roce 2018.

Zkušenost eSolaru je tedy dobrým příkladem praktických obtíží zavádění solárně-termálních elektráren do praxe. Obor byl na přelomu první dekády 21. století plný nadějí, ale dnes jde o zcela okrajovou záležitost omezenou v podstatě na pár zemí na světě. Výkon všech elektráren tohoto typu je něco přes šest gigawattů, což je z globálního hlediska zcela zanedbatelná hodnota.

Zrcadla solární termální elektrárny společnosti Heliogen (foto Heliogen)
Zrcadla solární termální elektrárny společnosti Heliogen (foto Heliogen)

Výroba elektřiny ze slunečního záření, tedy fotovoltaické systémy, jsou praktičtější, protože vyžadují obecně řečeno jednodušší údržbu a fungují i při zamračené obloze a slabším světle. A co je samozřejmě ještě důležitější, jsou dnes jednoznačně levnější. Jejich cena také nadále klesá, a minimálně z technologického hlediska se jeví oprávněná naděje, že trend by mohl pokračovat i v blízké budoucnosti.

Uvidíme, jak se Heliogen s těmito problémy popere. Získané prostředky totiž firma použije jak na další vývoj své “Sunlight Refinery”, jak systém nazývá, a jednak na realizaci několika skutečných instalací, které by fungovaly v reálných výrobních procesech ve velkém měřítku.

Jedno z těchto pilotních pracovišť bude v Boronu v Kalifornii, kde společnost Rio Tinto provozuje důl na boráty. Podle memoranda o porozumění podepsaného v březnu zahrne technologii společnosti Heliogen do svých obvyklých procesů na místě. Další memorandum o porozumění se společností ArcelorMittal “zhodnotí potenciál produktů Heliogen v několika ocelárnách společnosti ArcelorMittal”. Plánují se zařízení v USA, v Asii a Tichomoří.

Maďarsko přichystalo systém státní podpory pro hlubinné geotermální projekty. Země tak může začít naplňovat svůj veliký geotermální potenciál.

Obyvatelé Maďarska mají pod svýma nohama oproti třeba nám, ale i většině dalších zemí světa, jednu na pohled neviditelnou, ale zajímavou výhodu: zajímavý zdroj “čistého tepla”. Geologické podmínky v Maďarsku totiž přejí využití geotermální energie.

Velmi zjednodušeně řečeno, pod Panonskou pánví stoupá teplota směrem do nitra Země rychleji, než bývá obvyklé. K tomu, aby teploty byly dost zajímavé pro energetické využití, je tedy zapotřebí mělčích a výrazně levnějších vrtů. Geotermální energie je ovšem v Maďarsku jedním z nejméně využívaných obnovitelných zdrojů energie. Měla by přitom hrát klíčovou roli při dosahování cílů země v oblasti klimatické neutrality do roku 2050.

Podmínky se ovšem začínají zlepšovat. Maďarsko se stalo sedmou zemí v Evropě, která zavedla systém snižování rizika pro projekty hlubinné geotermální energie. Maďarské ministerstvo pro inovace a technologie vyhlásilo 8. června 2021 výzvu k předkládání nabídek na podporu projektů geotermálního vytápění se státní garancí na pokrytí geologických rizik prvních vrtů.

Touto zvláštní výzvou se Maďarsko připojilo k Francii, Německu, Nizozemsku, Švýcarsku, Islandu a Turecku, které tento státem podporovaný systém pojištění pro geotermální zdroje zavedly. Toho bylo dosaženo i díky práci vykonané v rámci projektu GEORISK financovaného EU.

Státní tajemník pro energetiku Attila Steiner ve své tiskové zprávě zdůraznil, že “geotermální energie, která staví na příznivých přírodních přednostech Maďarska, je reálnou možností, jak nahradit fosilní paliva, a jako taková dokonale zapadá do střednědobých cílů energetické strategie, jejichž cílem je vytvořit do roku 2030 bezpečné, ke klimatu šetrné a inovativní energetické odvětví.”

Vzhledem k tomu, že udržitelné využívání bohatých geotermálních zdrojů je v Maďarsku klíčovou otázkou, výzva podporuje pouze projekty, které vrací použitou vodu zpět do původních vrstev (tj. s reinjekcí). Případně pak vrtání pouze reinjekčních vrtů k již existujícím systémům. Cílová hloubka je 1 000-2 500 m pod povrchem.

Celkový rozpočet činí 6 miliard forintů (přibližně 16,6 milionu EUR). Výzva je otevřena do 31. prosince 2021 a příjem žádostí je průběžný. Jednotlivé projekty se mohou pohybovat v rozmezí od 100 milionů forintů do 2 miliard forintů (přibližně 278 000 až 5,7 milionu eur). Způsobilé náklady se týkají vrtů a testování. K proplacení dochází po provedení testů vrtu. Míra úspěšnosti se určuje porovnáním skutečných průtoků a teplot s hodnotami ve studii proveditelnosti předložené při žádosti o podporu. Míra úhrady činí 30 % v případě úspěchu, 40 % v případě částečného úspěchu a 60 % v případě neúspěšných projektů.

Na začátku tohoto roku jsme také informovali o novém interaktivním mapovém nástroji pro průzkum potenciálních míst pro rozvoj geotermální energie v Maďarsku. Text výzvy a podpůrné dokumenty jsou k dispozici na domovské stránce Maďarské báňské a geologické služby, která je určeným provozovatelem programu.

V Česku stále přes 300 tisíc domácností využívá uhlí pro lokální vytápění. Čtyři z deseti českých domácností jsou pak vytápěny ze systému zásobování teplem, přičemž 60 % tepla je vyrobeno na bázi uhlí. Co a jak by se mělo změnit, aby se systém přizpůsobil novým požadavkům na snižování emisí oxidu uhličitého a také škodlivých emisí?

Cestu se pokouší najít nová studie Fakulty elektrotechnické ČVUT (zde v PDF), která zkoumá různé cesty postupného přechodu k ekologickým řešením, včetně dočasného využití zemního plynu. Jde o první scénář realistické dekarbonizace teplárenství ve střední Evropě.

Jak to udělat doopravdy

Domácnosti ve střední a východní Evropě jsou typicky závislé na uhlí a plynu v teplárenství a mezinárodní výzkumné týmy podle českých odborníků problém doposud patřičně neřešily. Podle studie bude potřeba do roku 2030 investovat do teplárenství přes 98 miliard korun, zemní plyn může být ale vzhledem k cíli klimatické neutrality pouze přechodným palivem.

„Naše studie ukazuje cestu, jak dekarbonizovat Česko a snížit produkci skleníkových plynů bez nerealistických slibů. Počítáme nutné investice v oblasti teplárenství, přičemž spoléháme na krátko až střednědobé využití zemního plynu, který však sám o sobě není považovaný za udržitelný zdroj vytápění. Klíčové je tedy připravit podmínky pro přechod sektoru na jiná, alternativní paliva a postupně počítat i s masivním nástupem výroby tepla prostřednictvím tepelných čerpadel. Ta dobrá zpráva navíc je, že víme, jak na to a kolik to bude stát,” uvádí studii jedna z jejích autorek dr. Michaela Valentová z ČVUT.

Podíl paliv na dodávkách tepla v ČR (v PJ)
Podíl paliv na dodávkách tepla v ČR (v PJ) (graf Knápek a kol.)

Michaela Valentová dále doplňuje: „Ačkoli využití zemního plynu přináší okamžité snížení emisí skleníkových plynů ve srovnání s uhlím o 40 až 50 %, není to cesta k dosažení uhlíkové neutrality a nesmí tak v současném technologickém prostředí představovat trvalé řešení, které by bránilo dosažení dlouhodobých cílů v oblasti dekarbonizace.“ Zemní plyn bude muset být v nadcházejících desetiletích postupně nahrazen jinými, bezuhlíkovými technologiemi.

Plány na transformaci výroby tepla musí zároveň zohlednit očekávaný rozvoj obnovitelných zdrojů energie (solární kolektory, fotovoltaické elektrárny, tepelná čerpadla) spolu s akumulací tepla a navrhnout celý vývoj systémů dodávky tepla tak, aby umožňoval postupnou integraci decentralizovaných zdrojů tepla založených na obnovitelných zdrojích.

Za kolik?

Podle scénáře, který počítá s nejnižšími náklady, jsou celkové potřebné investice v sektoru teplárenství v období 2021–2030 odhadovány na 98,3 miliardy Kč a v konzervativním scénáři na 107,2 miliardy Kč. Pro srovnání: vletech 2014–2019 bylo do opatření na snižování emisí skleníkových plynů v sektoru teplárenství investováno celkem 33,1 miliardy Kč, tedy pouhá třetina částky, kterou bude potřeba vynaložit v následujících deseti letech.

Michaela Valentová také zdůrazňuje další důležitý aspekt: „Z pohledu současných pravidel pro regulaci emisí jsou dvě třetiny dosavadních investic v teplárenství neudržitelné a dnes by nezískaly investiční podporu z veřejných zdrojů. Klíčové tedy bude při transformaci teplárenství investovat inovativně.”

Studie také upozorňuje, že dekarbonizace na straně výroby tepla musí rovněž odrážet prioritizaci zvyšování energetické účinnosti na straně spotřebitelů a tedy očekávaný pokles spotřeby tepla a změnu profilu spotřeby tepla v průběhu roku.

Investiční potřeby pro přechod českého teplárenství v letech 2021-2030, v milionech korun
Investiční potřeby pro přechod českého teplárenství v letech 2021-2030, v mil. Kč (graf Knápek a kol.)

Biomasa může plně nahradit uhlí pouze v malých či středních zařízeních, pro velká zařízení musí být zajištěna dlouhodobá dodávka udržitelné biomasy, což je náročné. Řešení poptávky po teple ve velkých městských oblastech by vyžadovalo velké množství biomasy, které je zřídka možné získávat lokálním, udržitelným způsobem. Navíc transformace teplárenství musí respektovat realistický, dlouhodobě udržitelný potenciál biomasy využitelný pro výrobu a dodávku tepla.

Energetické využití odpadu je zpravidla řešením menšího rozsahu, které může zajistit udržitelné a spolehlivé zásobování energií a současně uspokojit potřeby udržitelného nakládání s odpady.Realizace tohoto přístupu však může být provedena pouze dohodou a spoluprací s okolními obcemi, pro které bude tato koncepce součástí jejich strategie nakládání s odpady.

Hlavně menší zdroje

Většinu investic budou vyžadovat zařízení do 50 MWt, přičemž největší objem investic bude potřeba pro výstavbu nových kogeneračních jednotek a rekonstrukci stávajících kogeneračních jednotek. Mezi lety 2025 a 2030 proběhne hlavní část požadované rekonstrukce pokrývající asi 70–80 % výrobní základny. Od roku 2030 do roku 2035 bude rekonstruována poslední část asi 10–15 % výrobní základny a vyřazena poslední zařízení spalující uhlí.

Očekává se, že klíčovou roli při podpoře investic bude hrát Modernizační fond, ve kterém je na podporu teplárenství vyčleněno přibližně 40 miliard Kč. Dalšími zdroji pak bude systém provozní podpory a také facilita na podporu oživení a odolnosti. Úroveň podpory investic bude velmi důležitá pro to, aby se transformace teplárenství co nejméně promítla do ceny tepla pro konečného zákazníka.

Ředitel teplárny C-Energy Planá pan Libor Doležal k tomu uvádí: „Klíčem k optimalizaci provozu naší teplárny a snížení nákladů jsou diverzifikace palivové základy a vysoká flexibilita provozu. V Plané jsme vyměnili tři staré uhelné kotle za dva fluidní kotle vybavené systémem pro odsiřování spalin a zrekonstruovali turbogenerátor.

V kotlích je dnes ze 45 % spoluspalována dřevní štěpka. Dále jsme instalovali již celkem šest vysokoúčinných kogeneračních jednotek o celkovém výkonu 60 MW se spalinovými kotli. Máme také největší bateriové úložiště v ČR. Ještě minulý rok bylo naší vizí v letech 2025 až 2030 postupně vyřadit uhlí a dosáhnout uhlíkové neutrality, dnes však víme, že s uhlím skončíme do roku 2023.“

Získávání energie z pod povrchu země má dlouhou tradici. Obvykle jde o energie ve formě hmoty, kterou pak nad zemí spálíme. Pod zemí se ovšem skrývá energie volná, pravda ve své nejméně ušlechtilé podobě: jako teplo.

S každým kilometrem, který urazíme směrem do nitra Země teplota stoupne v průměru o 30°C. Zhruba tři kilometry pod povrchem tak je k dispozici voda, která by se dala využít například k vytápění. (Ne přímo, přes tepelný výměník, aby mineralizovaná voda nezanášela potrubí.)

Princip je jednoduchý: v podstatě stačí vytahovat ze země teplou vodu, teplo z ní “vytáhnout”, a pak se jí nějak zbavit. Nejčistší způsbo je ji jiným, blízkým vrtem vrátit do stejných hloubek. To sice stojí energii navíc, ale zase nemusíme řešit, co s vyčerpanou vodou z podzemí, která se kvůli velkému množství minerálů nemá prakticky žádné využití.

Kde to jde

Využití této tzv. geotermální energie je samozřejmě lákavá a lidé už s tím dlouhá desetiletí experimentují. Výsledky jsou ovšem až na výjimky horší, než by první pohled naznačoval. Aktuálně je produkce geotermální energie nejvyšší v USA (3,6 GW ), vysoká míra využití je díky příhodným geologickým podmínkám také na Filipínách (1,9 GW ) nebo v Indonésii (1,8 GW ). Nový Zéland má kapacitu 0,9 GW, Island 0,6 GW.

Silným hráčem na tomto poli začíná být Turecko, které v roce 2020 plánuje otevřít velkou geotermální elektrárnu využívající čtyři vrty do téměř pětikilometrové hloubky. Instalovaná kapacita země tak bude vyšší než všech zemí EU dohromady.

Zkušební vrt v českém středisku Ringen pro výzkum geotermální energie (foto: 
Ringen)
Zkušební vrt v českém středisku Ringen pro výzkum geotermální energie (kredit
Ringen)

Země EU získávají celkem 1,3 GW geotermální energie. Předpokládá se, že do roku 2050 by mělo dojít k výrazném, někde snad až tisícinásobnému nárůstu využívání geotermálním energie v každé ze zemí EU. Bude ale záležet na místních podmínkách, kterou nejsou všude stejné. Ostatně, my můžeme spíše závidět: některé oblasti těsně za českými hranicemi mají zřejmě výrazně větší potenciál než Česko.

V současné době je podíl elektrické energie získávané z geotermálních zdrojů v rámci EU cca 0,4 %. Udává se, že z celkového globálního potenciálu geotermální energie se v současné době využívá zhruba 1 %. V řadě zemí lze předpokládat velmi zajímavý potenciál rozvoje (Maďarsko, Chorvatsko, částečně snad i Slovensko).

V některých vybraných zemích je ovšem dnes podíl využívané energie dosti vysoký. Na Island je to například 28 %, v Salvadoru 25 %, v Keni 20 %. Z velkých evropských zemí má největší kapacity Itálie, která z geotermálu pokrývá zhruba 3 % své spotřeby.

Tři cesty

Prakticky se nabízí tři možnosti. První je provozovat velmi mělké vrty, které sahají do hloubky pár stovek metrů, a doplnit je tepelným čerpadlem. Není to masivní zdroj energie; ušetří zhruba 30 procent energie na vytápění, případně v létě na chlazení. Návratnost je tedy v řadě případů sporná, protože náklady na vrt jsou příliš vysoké.

Další možností je vrtata do již zmiňovaných hloubek kolem tří kilometrů. Zvláště pokud jsou hodně propustné (tedy ideálně nějaké měkčí usazeniny) je možné z takových hloubek celkem účinně čerpat vodu o teplotách, které se hodí na vytápění.

Třetí, technicky nejnáročnější možnost si žádá vrty do hloubek do míst, kde teploty dosahují alespoň 120°C. Což je většinou do hlouběk přesahujících čtyři kilometry. Pokud je v takovém vrtu dostatek vody (dává přes 100 litrů za minutu), lze z nich už vyrábět elektřinu i elektřinu.

Na většině míst světa jde ovšem výroba geotermální elektřiny příliš drahá. Už proto, že samotná geotermální elektrárna má ohromnou spotřebu. Některé zdroje spotřebuji polovinu vyrobené elektřiny na pohon čerpadel, které tlakují vodu do vrtů. Vyplácí se pouze v místech, kde tak hlubkové vrty nejsou zapotřebí (například Island, Filipíny, Turecko, západ USA a pár dalších).

Geotermální elektrárna Nesjavellir na Islandu. Tato druhá největší geotermální elektrárna na Islandu má výkon 120 MW elektřiny a 150 MW v teple. Ale využívá zcela ojediněle přiznivých podmínek Islandu. (foto: Gretar Ívarsson)

Návratnost vrtů do menší hloubek může být i v méně příhodných geologických podmínkách zajímavější. Návratnost by se teoreticky měla blížit hodnotám, které dělají geotermální energii zajímavým zdroj nízkoemisního tepla (zvláště pokud by emitující zdroje byly zatíženy uhlíkovou daní). Pokud se ovšem nestane problém…

Zatrápená zeměstření

Geotermální zdroj lze využívat pouze, pokud je hornina dostatečně propustná. V některých místech, především v měkkých a propustných sedimentech, to není problém. Někde – a vždy při vrtech do hodně velkých hloubek – tomu ovšem je nutné pomoci.

K tomu se používá dnes již velmi osvědčený těžební postup známý jako hydraulické štěpení. Spočívá v tom, že se do vrtu pod velkým tlakem vtlačí kapalina, která skály doslova roztrhá.

Ukázka hydraulického štěpení známého také jako “frakování” (anglicky “fracking”). Obrázek zachycuje i možnost vzniku štěpením vyvolaných otřesů, o kterých ještě budeme mluvit. (kredit: Mikenorton)

Štěpení je ve větších hloubkách nezbytné, má však svá rizika. Za určitých okolností (pokud je v místě například do té doby neznámý zlom) může vyvolat i poměrně silné otřesy.

Slavný, či spíše neslavný, je příklad z roku 2006, kdy se objevily otřesy na geotermálním projektu v Basileji. Tamní vrt byl hluboký cca 4,5 kilometrů a štěpení vyžadoval. V jeho důsledku (až po ukončení štěpení, ale téměř jistě v souvislosti s ním) tu došlo zemětřesení s magnitudem zhruba 3,4.

O několik let později, v roce 2013, došlo k problémům na dalším projektu v St. Gallenu. V tomto případě těžaři narazili na ložisko zemního plynu. Operatáři museli zabránit úniku plynu a využili k tomu připravenou speciální tekutinu. Při tom ovšem bohužel došlo k natlakování okolní horniny, které vedlo k nechtěnému štěpení usazenin relativně blízko povrchu. To znovu způsobilo otřesy o magnitudu 3,5. Po těchto událostech Švýcarsko přistupuje ke geotermální energií již velmi opatrně.

Podobných událostech lze podle odborníků nepochybně předcházet, či přesněji lze riziko jejich vzniku výrazně snížit. Problém je ovšem v tom, že stačí jedna chyba, nerozvážnost či smůla a i slibný projekt může skončit. Ani energie z nitra Země není “bezpracná”.

Společnost ČEZ vyhlásila nové zadávací řízení na dostavbu horkovodu z Temelína do Českých Budějovic. Horkovod měl začít dodávat teplo do Českých Budějovic na přelomu loňského a letošního roku. Od konce loňského roku ale práce na projektu stojí.

Po únorovém úpadku firmy Tenza, která horkovod stavěla od března 2019, zbývá dokončit 11 z 26 kilometrů. Nového dodavatele stavby za víc než 1,4 miliardy Kč chtějí energetici vybrat letos na podzim, řekl mluvčí Temelína Marek Sviták.

Při výběru nového dodavatele musí ČEZ postupovat podle zákona o zadávání veřejných zakázek. Zájemci mají na přihlášku 30 dní, musí mít kromě jiného zkušenosti s podobným typem staveb. „Vyhlášení výběrového řízení je aktuálně jedinou možností, kterou nám legislativa umožňuje,“ uvedl Sviták. Tendr bude vícekolový.

ČEZ vypsal zadávací řízení poté, co se půl roku zkoušel s firmou Tenza domluvit. Její vedení na konci února vyhlásilo úpadek. Problémy s insolvencí Tenzy mají také Teplárny Brno, pro které měla vyměnit parovody za horkovody v Brně Poříčí. Ani zde Tenza projekt nedokončí a Teplárny budou řešit výběr nového zhotovitele.

Práce na horkovodu zastavila Tenza v závěru loňského roku. Důvodem byly problémy, které společnost zdůvodnila hlavně pandemií koronaviru a s tím spojeným odkladem plateb. Z 26 kilometrů potrubí předala společnosti ČEZ 15 kilometrů. Problémy zaviněné úpadkem Tenzy evidují i její subdodavatelé: Česká televize v březnu týden uvedla, že nedostali zaplaceno zhruba 300 milionů korun. ČEZ uplatňuje po firmě Tenza pohledávku přes miliardu Kč, firma navíc dluží i bankám; Komerční banka eviduje pohledávky v řádech stovek milionů, jak vyplývá z insolvenčního rejstříku.

Na Budějovice

Temelínské teplo by mělo pokrýt 30 % výroby tepla pro České Budějovice, zbytek zajistí městská teplárna z vlastních zdrojů. Temelín městu ročně dodá 750 TJ tepla, hlavně pro sídliště Vltava, Šumava, Máj a Pražské předměstí. Díky temelínskému teplu bude moci Teplárna České Budějovice snížit spotřebu uhlí až o 80 tisíc t ročně. Nejen z hlediska emisí, ale také vzhledem k nepříliš jasným vyhlídkám v zásobování uhlím na českém trhu lze takový krok považovat za naprosto racionální. Smlouvu o dodávkách podepsalo město se společností ČEZ v prosinci 2018, teplo by měl Temelín Budějovicím dodávat nejméně 20 let.

Do Českých Budějovic bude proudit voda o teplotě 140 stupňů, k jejímuž ohřevu se využije část páry pro turbínu. Teplovod tedy nevyužívá odpadního tepla z elektrárny. V tomto okruhu jsou příliš nízké teploty pro daný účel: voda proudící do chladírenských věží má teploty pouze kolem 30 stupňů.

Plán propojit elektrárnu s krajským městem se poprvé objevil v polovině 80. let 20. století. Projektanti s ním počítali ještě v době, kdy se elektrárna začala v roce 1987 stavět. V rámci projektu se uvažovalo o vývodu zmiňovaného odpadního tepla z Temelína, které se pro teplovod nehodí. Mělo se využít v bezprostředním okolí elektrárny, například na vytápění velkoprostorových skleníků. Plán tehdy měl ztroskotat na nezájmu místního zemědělského družstva.

O teplovodu se neuvažovalo pouze v Temelíně, ve hře svého času byla také varianta stavby teplovodu z Dukovan do Brna. Teplovod měl měřit zhruba 42 km a vedl by podstatně složitějším terénem s poměrně značnými výškovými rozdíly. Jednalo se tedy o náročnější stavbu s uvažovanou cenou miliard korun v cenách z 90. let.

Načíst další