Stejně jako ve většině vyspělých zemí i ve Švýcarsku rychle roste počet vozidel, která zcela, nebo alespoň z části pohání elektřina. Stejně tak se zvyšuje i podíl elektřiny, který se v této alpské zemi získává z obnovitelných zdrojů. Mladá švýcarská start-upová firma sun2wheel se rozhodla spojit oba tyto vývojové trendy a vyvinula nabíjecí stanici, která umožňuje použít baterie elektrických vozidel i jako úložiště energie.

Je dobře známou skutečností, že vozidla po většinu času nikam nejedou, nehýbají se, ale jsou někde zaparkovaná – doma v garáži, na parkovišti v místě zaměstnání, u supermarketu či leckde jinde. To samozřejmě neplatí jen pro auta na fosilní paliva, ale i pro elektromobily. Jejich baterie mají přitom mnohem větší úložnou kapacitu, než jaká je potřeba pro každodenní ježdění. Zakladatelé společnosti sun2wheel si tento fakt uvědomili a vytkli si za cíl využít potenciál této velké kapacity k domácímu nebo i firemnímu skladování energie.

Tento švýcarský start-up vyvinul nabíjecí stanici, pomocí které lze elektromobily nejen nabíjet, ale také z nich uloženou energii jednoduše získávat zpět. Elektřina vyrobená například s pomocí fotovoltaických panelů umístěných na střeše domu tak může být po určitou dobu uložena v elektromobilu parkujícím v garáži a následně znovu použita přímo v tomto domě. Takto uloženou solární energii lze použít například v noci, kdy fotovoltaické panely nepracují, k provozu důležitých elektrických spotřebičů, které musejí být neustále v činnosti, nebo třeba i k vytápění budovy tepelným čerpadlem.

Přednosti nabíjecího systému sun2wheel zde ale nekončí. Jeho dalším zajímavým rysem je jeho modularita. Lze jej totiž rozšířit o další baterie, které již třeba svou službu elektromobilitě splnily a nyní čekají na likvidaci. Systém lze v podstatě neustále rozšiřovat. Tuto možnost zvláště ocení například větší bytové domy nebo kancelářské budovy. Pro ně vyvinula sun2wheel speciální novou technologii V2G, aby rezidenti či firmy mohli vlastními silami vyrobenou solární energii co nejlépe využít a zvýšit tak svou energetickou soběstačnost. V komerčním kontextu skýtá tento ukládací systém ještě další výhodu: tzv. peak shaving. Díky němu je možné v jisté míře korigovat výkyvy v síti, resp. zátěžové špičky, a přispět tak k usměrňování ceny elektřiny.

Ke svému nabíjecímu systému vyvinula firma sun2wheel i vlastní software, který umožňuje optimalizovat všechny energetické toky mezi vozidlem, fotovoltaickým systémem, akumulátorem, budovou a veřejnou elektrickou sítí. Celý systém tak lze ovládat, jak je to dnes obvyklé, i prostřednictvím mobilu.

Ve Švýcarsku dosáhl v polovině letošního roku podíl elektromobilů a plug-in hybridů na veškerém tamním vozovém parku 23 procent. Je však třeba mít na paměti, že přesun k elektromobilitě má smysl pouze tehdy, když budou elektromobily využívat především energii získanou z obnovitelných zdrojů. A právě o to společnosti sun2wheel jde. Díky svému novému nabíjecímu/vybíjecímu řešení navíc rozšiřuje možnosti využití elektromobilních baterií, což v kontextu stále rostoucích nároků na energetickou infrastrukturu hraje a bude hrát nemalou roli.    

Podle nové studie budou představovat více než polovinu všech prodaných vozů ještě před rokem 2033. Přísnější předpisy a rostoucí zájem totiž výrazně zvyšují poptávku po bezemisních dopravních prostředcích.

Alespoň to předpokládá poradenská společnost Ernst & Young, podle kterého prodej elektromobilů převýší během příštích dvanácti let prodej vozů na fosilní paliva v Evropě, Číně a USA, tedy největších automobilových trhů na světě. A do roku 2045 klesne podíl prodeje automobilů bez elektromobilů na méně než 1 % celosvětového trhu s automobily, odhaduje model společnost Ernest Young.

Přísné vládní mandáty v boji proti změně klimatu jsou hnacím motorem poptávky v Evropě a Číně, kde výrobci automobilů a spotřebitelé čelí rostoucím finančním sankcím za prodej a nákup tradičních automobilů na benzinový a naftový pohon. Ernest Young vidí Evropu jako lídra v přechodu na elektrický pohon, přičemž do roku 2028 budou modely s nulovými emisemi převyšovat všechny ostatní pohonné systémy. V Číně tento bod zlomu nastane v roce 2033 a v USA v roce 2036, odhaduje předpovědní model.

Spojené státy zaostávají za ostatními předními světovými trhy, protože během vlády prezidenta Donalda Trumpa došlo ke zmírnění předpisů na spotřebu paliva. Od lednového nástupu do funkce se prezident Joe Biden znovu připojil k Pařížské klimatické dohodě a navrhl vynaložit 174 miliard dolarů na urychlení přechodu na elektromobily, včetně instalace půl milionu dobíjecích stanic po celé zemi.

“Regulační prostředí Bidenovy administrativy považujeme za velký přínos, protože má ambiciózní cíle,” řekl v rozhovoru pro agenturu Bloomberg Randy Miller, globální lídr společnosti EY pro pokročilou výrobu a mobilitu. “Vývoj v Americe bude mít efekt na celý zbytek světa.”

Přitažlivější

Roste také zájem spotřebitelů o elektromobily, od žádaného Modelu 3 společnosti Tesla až po nové elektrické modely, které přicházejí od starších výrobců automobilů, jako je bateriový nákladní automobil Hummer společnosti General Motors Co. a pickup F-150 Lightning společnosti Ford Motor Co. Podle poradenské společnosti AlixPartners investice světových výrobců automobilů do bateriových modelů nyní dosahují 230 miliard dolarů.

“Na trh přichází mnoho dalších modelů, které jsou pro spotřebitele mnohem atraktivnější,” řekl Miller. Když se k tomu přičtou státní pobídky na prodej elektromobilů, podle Millera jsou pohromadě všechny nutné ingredience k rychlému nárůstu poptávky po elektrických vozech.

Studie Ernest Yroung také předpokládá, že k rozšíření elektromobilů přispěje generace mileniálů, kterým dnešních dvacátníků až třicátníků. Tato skupina spotřebitelů kvůli koronavirové pandemii odmítají sdílené jízdy a veřejnou dopravu a ve větší míře se hlásí k vlastnictví automobilu. Podle průzkumů až 30 % z mileniálů chce řídit elektromobil, uvedl Miller. “Vidíme u miliniálů jednoznačně větší příklon k tomu, že si chtějí koupit elektromobil,” řekl Miller.

Zavádění vozidel na baterie navíc urychluje kombinace vládních pobídek k nákupu elektromobilů a navrhovaných zákazů spalovacích motorů ve městech.

Předpokládá se, že Evropa bude mít vedoucí postavení v objemu prodeje elektromobilů až do roku 2031, kdy se největším světovým trhem pro elektromobily stane Čína.

Analýza tak odhaduje, že že vozidla poháněná benzinem a naftou budou v roce 2025 stále tvořit přibližně dvě třetiny nově registrovaných osobních vozidel. Proti roku 2020 to bude však představovat pokles o 12 procentních bodů. Do roku 2030 budou podle předpovědi Ernest Young automobily bez elektrického pohonu tvořit méně než polovinu všech registrací osobních vozidel.

Jižní Korea plánuje do konce tohoto desetiletí investovat do posílení výroby baterií pro elektromobily 40,6 bilionu wonů (35 miliard USD). Chce si tak upevnit pozici velmoci v tomto výrobním odvětví a zvýšit konkurenční tlak na dosud dominantní Čínu a Japonsko. Hlavními investory tohoto ambiciózního plánu budou především velké korejské technologické společnosti LG Energy Solution (LGES), SK Innovation a Samsung SDI.

„Cílem tohoto plánu je zajistit, aby společnostem byly poskytovány náležité pobídky k investicím do výzkumu a vývoje, které jim pomohou stát se na trhu s bateriemi světovými lídry,“ uvádí se v prohlášení korejské vlády. Podle vládního dokumentu se totiž jedná o odvětví, které se má stát životně důležitou součástí budoucí ekonomiky země.

Jihokorejští výrobci baterií pro elektromobily jsou jedni z největších na světě. Svědčí o tom například to, že v první polovině letošního roku jim patřila třetina celosvětového trhu. Korejské firmy navíc stále expandují – budují výrobní závody po celém světě, aby dokázaly uspokojit stále rostoucí poptávku po elektromobilech. Jejich výrobní kapacita se za posledních pět let téměř zečtyřnásobila na stávajících 217 GWh.

Aktuální vedoucí pozici Číny dokládá podle korejské poradenské společnosti SNE Research například to, že čínská společnost Amperex Technology letos sama dodala na světové trhy 31 % baterií. Potenciál dalšího rozvoje je však značný a SNE Research očekává, že globální trh s bateriemi vzroste do roku 2030 ze současných 46 miliard dolarů na zhruba 352 miliard dolarů. „Další investice a podpora jsou v tomto okamžiku naprosto zásadní, protože očekáváme, že tento trh dlouhodobě poroste,“ zdůraznil Yoon Joon-won z korejské investiční společnosti DS Asset Management.

Masivní podpora od státu i firem

Ze tří zmíněných technologických firem zatím nejaktivněji vystupuje společnost LGES, která se již nechala slyšet, že do roku 2030 plánuje investovat do rozvoje bateriových technologií 15,1 bilionu wonů, z toho téměř dvě třetiny – 9,7 bilionu wonů – do výzkumu a vývoje. Vedle toho chce tato firma podpořit i oblast vzdělávání – v Jižní Koreji hodlá v roce 2023 otevřít institut zaměřený na školení v oblasti bateriových technologií.

LGES zásobuje bateriemi velké automobilky, jako je Tesla, General Motors nebo Volkswagen, a poptávka po jejích produktech je tudíž značná – v současné době má nevyřízené zakázky na baterie v hodnotě přes 180 bilionů wonů. Do roku 2023 proto plánuje zvýšit výrobní kapacitu na 260 GWh, díky čemuž by do automobilového provozu mohlo v dohledné době vyjet dalších 3,7 milionu elektromobilů.

Společnosti SK Innovation a Samsung SDI své investiční plány v rámci tohoto vládního projektu zatím nezveřejnily, očekává se však, že Samsung SDI do roku 2030 vloží celosvětově do výzkumu a vývoje více než 9 bilionů wonů. SK Innovation plánuje investovat v příštích pěti letech do výzkumu a výroby doma i v zahraničí kolem 18 bilionů wonů.

Skromněji přispěje korejská vláda, která hodlá do roku 2028 tuto iniciativu podpořit částkou 306,6 miliardy wonů, především pak projekty zaměřené na vývoj baterií příští generace, jako jsou baterie založené na technologiích all-solid-state, lithium-síra a lithium-kov.

Do celé záležitosti se vložil i korejský prezident Moon Jae-in, který oznámil, že státem by měly být podporovány především firmy vyvíjející produkty nové generace, včetně bateriových technologií. Malým a středním firmám by měl vypomoci speciální fond dotovaný 80 miliardami wonů. Ten by měl těmto firmám usnadnit nákup materiálů a komponentů potřebných pro výrobu baterií. Do fondu by měly přispět jak vláda, tak různé finanční instituce a již zmínění tři velcí výrobci baterií, kterým byly od vlády na oplátku přislíbeny daňové úlevy ve výši až 50 %.

Že však poměry mezi korejskými technologickými firmami nejsou tak harmonické, jak by se na první pohled mohlo zdát, dokládá nedávný a stále živý spor mezi LG a SK Innovation na americkém trhu. Společnost LG tam obvinila SK coby konkurenta, že jí ukradl některá obchodní tajemství. Americká komise pro mezinárodní obchod dala LG za pravdu a na deset let zakázala dovoz většiny lithium-iontových baterií od SK na americký trh.

Rychlejší rozvoj brzdí surovinová závislost

Určitým problémem korejských výrobců baterií je, že většinu polotovarů musejí dovážet ze zahraničí, hlavně z Číny a Japonska. Podle společnosti B3 Intelligence, která se zabývá průzkumem trhu, například v loňském roce Čína a Japonsko ovládaly 70,2 % trhu s katodami. Na trhu s anodami byla jejich dominance ještě větší: 91,7 %. S dalšími nezbytnými ingrediencemi pro výrobu baterií – se separátory a elektrolytem – to bylo velmi podobné: tyto dvě země měly tržní podíly 80,3 %, resp. 87,9 %. Pro srovnání: Korea měla na trhu s katodami podíl pouze 19,5 %, v případě anod to bylo 8,3 %, 19,7 % u separátorů a 12,1 % u elektrolytů.

I přes tuto velkou ekonomickou rivalitu se Jižní Korea v loňském roce připojila k Číně a Japonsku, aby si společně stanovily rok 2050 jako nejzazší termín, kdy se stanou uhlíkově neutrálními. Korea plánuje vynaložit na svůj vlastní „Green New Deal“ 42,7 bilionu wonů. Cílem těchto investic by měla být především podpora nízkouhlíkových zdrojů energie a ztrojnásobení výroby obnovitelné energie již do roku 2025.

Řada automobilek se v současnosti velmi usilovně snaží navrhnout takový elektromotor, který by ke svému fungování nepotřeboval žádný permanentní magnet. Děje se tak částečně proto, že k výrobě magnetů jsou potřeba vzácné kovy a jejich těžba způsobuje ekologické škody. Z části je to ale také proto, že velká část této těžby – zhruba 90 % – se uskutečňuje v Číně, a v západním světě dnes převládá snaha ekonomickou závislost na této východoasijské zemi co nejvíce omezit.

Většina elektromotorů, které byly dosud vyvinuty, je založena na otáčejících se zařízeních, která kontaktně přenášejí elektřinu na měděné cívky v rotoru. V novém typu elektromotoru, s nímž nedávno přišla německá firma Mahle, však žádná kontaktní místa nejsou. Prostřednictvím cívky se totiž indukuje proud přímo v přijímací elektrodě uvnitř rotoru, a ten pak napájí měděná vinutí, čímž vytváří potřebné elektromagnetické pole.

„K přenosu elektřiny v tomto motoru nejsou třeba žádné kontakty, takže nemůže dojít k abrazi, zanášení prachem nebo jinému mechanickému opotřebení,“ uvedl o novince Martin Berger, který ve společnosti Mahle vede výzkum. „Výhodou je také to, že pokud je nutná oprava rotoru, není nijak obtížné jej celý vyměnit,“ doplnil.

Výroba tohoto elektromotoru bez použití vzácných kovů by měla být i levnější. Jeho konstrukce navíc umožňuje i následné ladění a změnu parametrů rotoru. To znamená, že celkovou účinnost motoru půjde velmi dobře optimalizovat podle jeho konkrétní aplikace – od využití v subkompaktních automobilech až po malé nákladní automobily. Podle Martina Bergera se motor naopak příliš nehodí pro ultrakompaktní vozidla, jako jsou třeba elektrokola, nebo pro velká nákladní vozidla, která obvykle pracují při stálém zatížení. „Velmi rychlá nebo těžká vozidla potřebují převodovku, ale ve většině případů použití, například v osobních automobilech, stačí jeden převodový stupeň,“ vysvětluje Berger.

Jak během testů vývojáři Mahle zjistili, účinnost tohoto nového elektromotoru je mimořádná: dosahuje až 95 %. Takovéto hodnoty se dosud dařilo dosahovat pouze závodními vozy Formule E. Testy ukázaly také to, že dobré účinnosti lze dosáhnout při vysokých i nízkých točivých momentech, což by ve výsledku mělo přispět k větší výdrži baterie vozidla.

Výroba tohoto elektromotoru by podle prohlášení Mahle měla být zahájena přibližně za dva a půl roku, což dává tušit, že společnost Mahle již navázala spolupráci s některou z automobilek zabývajících se výrobou elektromobilů.

Vědcům z Pacific Northwest National Laboratory (PNNL), výzkumného centra spadajícího pod americké ministerstvo energetiky, se podařilo výrazně prodloužit životnost lithium-kovové baterie. Pro další rozvoj elektromobility se jedná o důležitý krok, protože razí cestu k lehčím, levnějším a trvanlivějším bateriím pro elektromobily budoucnosti. O úspěchu informoval na konci června časopis Nature Energy.

Vědci v současné době zkoumají celou škálu možností., jak zvýšit kapacitu bateriových článků pro elektromobily. Jedním z řešení, které je již takříkajíc na obzoru, jsou lithium-kovové baterie. Tyto baterie by měly dodávat téměř dvojnásobnou energii, než jakou poskytují jejich dnes běžně používané lithium-iontové protějšky, a navíc by měly být i lehčí. Při laboratorních testech, které se až doposud prováděly, však vždy nastaly vážné technické potíže a lithium-kovové baterie tak dosahovaly pouze zlomku životnosti lithium-iontových baterií.

Nyní se však týmu vědců z PNNL povedlo vytvořit lithium-kovovou baterii, která vydrží 600 cyklů, což je mnohem déle, než se dosud podařilo dosáhnout. I když je to stále výrazně méně, než kolikrát lze nabít klasické lithium-iontové baterie – ty totiž obvykle mají životnost nejméně 1 000 cyklů –, je třeba vzít v úvahu, že tento rozdíl by do značné míry mělo kompenzovat to, že vozidla s lithium-kovovou baterií by měla dojet na jedno nabití výrazně dále.

Životnost překvapivě prodlužují tenké lithiové proužky

Tým vědců z PNNL přišel na poměrně překvapivý způsob, jak prodloužit životnost baterie. Místo anod obsahujících větší množství lithia použil jeho velmi tenké proužky – o tloušťce pouhých 20 mikronů, což je mnohem méně než tloušťka lidského vlasu.

„Mnoho lidí si myslelo, že delší životnost baterie zajistí silnější vrstva lithia,“ uvedla k závěrům výzkumu Jie Xiao, která je spolu se svým kolegou Jun Liu, ředitelem konsorcia Battery500, jež spadá pod PNNL, autorkou výše zmíněného článku. „Není to ale vždy pravda. Každá lithium-kovová baterie má totiž svou optimální tloušťku v závislosti na její energetické hustotě a designu,“ dodala.

Lithium-kovová baterie vytvořená týmem Battery500 má hustotu energie 350 watthodin na kilogram (Wh/kg) – tedy velmi vysokou, ale nijak extrémně. Hlavním přínosem reportovaného výzkumu je především životnost baterie. I po 600 cyklech si totiž baterie uchovala 76 procent své původní kapacity. Před čtyřmi lety přitom dokázala experimentální lithium-kovová baterie zvládnout pouze 50 cyklů a ještě před dvěma lety to bylo jen 200 cyklů.

Proč je důležitá tloušťka

Rozhodnutí týmu vyzkoušet tenčí lithiové proužky padlo poté, co se mu podařilo detailně porozumět molekulární dynamice anody. Vědci zjistili, že silnější proužky se významně podílejí na selhávání baterie, a to v důsledku složitých reakcí probíhajících ve filmu na anodě označovaných jako pevná elektrolytická mezifáze neboli SEI (Solid Electrolyte Interface). Tato SEI je výsledkem vedlejších reakcí mezi lithiem a elektrolytem. Působí jako důležitý usměrňovač, který umožňuje určitým molekulám přejít z anody do elektrolytu a zpět, přičemž ostatní molekuly drží odděleně. Primárním cílem výzkumníků tedy bylo snížit nežádoucí vedlejší reakce mezi elektrolytem a lithným kovem a ty žádoucí co nejvíce podpořit.

Vědci zjistili, že tenčí lithiové proužky jsou schopny vytvářet něco, co nazvali dobrá SEI, zatímco u silnějších proužků je větší pravděpodobnost, že vznikne škodlivá SEI. Vědci pro tyto jevy začali používat výrazy „mokrá SEI“ a „suchá SEI“. Mokrá varianta udržuje kontakt mezi kapalným elektrolytem a anodou a umožňuje tak vznik důležitých elektrochemických reakcí. V suché verzi kapalný elektrolyt nedosahuje kontaktu s celým lithiem. Dochází k tomu proto, že lithiové proužky jsou silnější a elektrolyt tak musí pronikat do hlubších vrstev, ostatní části lithia pak osychají nebo zůstanou suché. Ŕízením těchto procesů lze podle vědců účinně zabránit výskytu těch reakcí, které podstatným způsobem přispívají k předčasnému konci životního cyklu baterie.

Řecko spustilo na jednom ze svých ostrovů v Egejském moři zajímavý technologicko-ekologický experiment. Cílem tohoto ambiciózního projektu, který na počátku června představil řecký premiér Kyriakos Mitsotakis, je vytvořit z ostrova Astypalaia místo, kde veškerá energie bude pocházet z obnovitelných zdrojů. Současně s tím by se měla zlepšit mobilita místních obyvatel i turistů po ostrově. Řekové se tímto projektem snaží dostat do popředí v boji proti změnám klimatu a zmíněný ostrov by se měl stát pro ostatní země vzorem budování klimaticky neutrální mobility.

Realizační fáze projektu by měla trvat šest let a měla by zahrnovat postupné nahrazování konvenčních soukromých i veřejných vozidel jezdících na ostrově elektrickými a také zavedení inovativního dopravního systému založeného na sdílené mobilitě, tedy sdílení vozidel nebo organizované spolujízdě. Projekt dále předpokládá, že dojde k zásadní přeměně výroby elektřiny. Ta by se měla nadále vyrábět pouze z obnovitelných zdrojů.

Základním cílem je zajistit, aby všechny každodenní činnosti na ostrově Astypalaia probíhaly jen s podporou obnovitelné energie. Na území ostrova dnes jezdí zhruba 1 500 vozů, ty by však již v brzké době měly být kompletně nahrazeny elektromobily. Vláda chce obyvatele ostrova k této obměně motivovat tím, že jim na pořízení bezemisních vozů či kol poskytne dotace. Na ostrově se již začíná stavět i potřebná infrastruktura – pro elektromobily již bylo nainstalováno prvních šest duálních nabíjecích stanic.

Vedle rozvoje elektromobility je v plánu také to, že do roku 2026 budou po silnicích ostrova jezdit jen autonomní autobusy, tedy autobusy bez řidičů. Předpokladem takto zásadní systémové změny však je, že se infrastruktura ostrova zásadně změní, což bude kromě jiného znamenat například instalaci sítě 5G. Projekt počítá i s vybudováním hybridní elektrárny, která bude k výrobě elektrické energie využívat jen obnovitelné zdroje. Energii k jejímu chodu budou poskytovat větrné turbíny, fotovoltaický park a akumulační baterie.

Příležitost pro Volkswagen

Významnou roli v celém projektu hraje německá automobilka Volkswagen, která si tak může vylepšit svoji pošramocenou pověst z nedávné minulosti. Automobilka již ostrovu darovala čtyři elektrická vozidla – po jednom místní policii, pobřežní stráži, civilní letecké službě a správě hlavního města, které se jmenuje stejně jako ostrov – Astypalaia. Jedná se o modely VW e-up!, ID.3 a ID.4. Volkswagen již na ostrov začal dodávat i elektrické skútry SEAT MÓ 125.

Řecko má s Volkswagenem dobré vztahy, a to jistě i proto, že patřilo mezi ty členské státy EU, které po něm v roce 2015 nepožadovaly žádné finanční kompenzace za emisní skandál Dieselgate. Současná vláda tento postup obhajuje tím, že na odškodnění neměla podle řeckého práva nárok.

Do celého projektu se zapojí i řada vědců, například odborníci ze skotské University of Strathclyde nebo řecké Egejské univerzity. Ti budou zkoumat zpětnou vazbu na zaváděné novinky, kterou budou dostávat od místních obyvatel. Výsledky, které vědci shromáždí, pak poskytnou dalším zemím a regionům, jež se budou chtít vydat stejným směrem. Cenné tipy budou zpřístupněny i široké veřejnosti.

Ostrov Astypalaia a jeho obyvatelé by do budoucna mohli významně těžit ze soběstačnosti zdrojů, a to i finančně. Astypalaia totiž v současné době získává naftu, benzín a plyn z řecké pevniny. Stejně je tomu i s potravinami a dalšími každodenními potřebami, i ty musejí být na ostrov dopravovány, především z největšího řeckého přístavu Pireus. Jedna taková plavba přitom trvá i deset hodin. To samozřejmě život na ostrově prodražuje. Astypalaia má však jedno velké plus: je jedním z mála ostrovů této velikosti, které mají vlastní zdroj vody. Pokud se tedy k této výhodě přidá energetická soběstačnost, život na ostrově se stane mnohem příjemnějším a hlavně levnějším.

Obyvatelé Astypalaie platí za energie v průměru o 25 procent více než lidé na řecké pevnině. To se týká nejen pohonných hmot, ale i elektřiny, energetickou poptávku totiž na ostrově v současné době pokrývají pouze dieselové generátory, které ročně vyprodukují kolem 5 000 t CO2. Obnovitelné zdroje tedy budou pro místní obyvatele znamenat nemalou finanční úsporu i ekologickou úlevu. Do roku 2023 by na ostrově měly být v provozu solární panely o celkovém výkonu 3 MW, což by mělo stačit na pokrytí veškerého provozu elektromobilů a až 60 % ostatních potřeb. V dalších letech by měl tento podíl dále narůstat.

Sdílení elektrovozidel pro místní i turisty

Sdílení veřejných automobilů a nový systém místní dopravy by měly snížit množství automobilů v soukromém vlastnictví. Hlavní řecký dovozce značky Volkswagen, firma Kosmocar, dodá na Astypalaiu místním autopůjčovnám flotily elektromobilů určených ke sdílení. Společně s Kosmocarem pak tyto společnosti budou poskytovat službu sdílení automobilů nejen místním, ale i turistům, kteří na ostrov v hojném počtu jezdí. Tyto automobily budou připojeny online k systému správy vozového parku, což by podle zástupců Kosmocaru mělo mimo jiné zabránit například tomu, že návštěvníci ostrova, kteří se často na ostrově nevyznají a mohou zabloudit, uvíznou s vybitým elektromobilem na některém z odlehlých míst ostrova.

V rámci zkvalitnění místní veřejné dopravy je v plánu vytvoření služby Shuttle-on-Demand. V současné době totiž působí na Astypalaii pouze jedna soukromá autobusová společnost – a to zejména v letních měsících, kdy velké množství turistů je zárukou dostatečné poptávky. Mimo turistickou sezónu je však nabídka žalostně slabá. To by se však mělo již brzy změnit. Na ostrově by měly vzniknout soukromé dopravní společnosti, které budou provozovat veřejnou dopravu celoročně a samozřejmě v plně elektrickém režimu.

Bylo to na počátku loňského roku, ještě před vypuknutím koronavirové pandemie, kdy automobilka Toyota oznámila na největším veletrhu spotřební elektroniky CES v Las Vegas, že zahajuje přípravy nebývalého projektu: stavby autonomního a bezemisního města budoucnosti. Je třeba říci, že Las Vegas – samo bizarní město, obklopené pouští, plné neonů, heren a nablýskaných hotelů – bylo pro tento účel opravdu příhodnou kulisou. Rok se s rokem sešel a Toyota jak řekla, tak i začala činit: v prefektuře Šizuoka, na dohled hory Fudži, zahájila na konci ledna výstavbu této „živé laboratoře“ – města s názvem Woven City. Název (woven = tkaný) přitom odkazuje jak na technologickou propojenost všech prvků budoucího města, tak na historické počátky Toyoty. Tato firma totiž, jak známo, začínala jako výrobce tkalcovských stavů.

Celý projekt podle Toyoty představuje jeden z pilířů transformace z výrobce automobilů na firmu poskytující komplexní služby mobility. K tomu, aby mohla automobilka tyto služby rozvíjet co nejefektivněji, začala dokonce – jak je dnes obvyklé – vytvářet nové dceřiné společnosti. Letos v lednu začala fungovat společnost Woven Planet, která navazuje na aktivity výzkumného ústavu Toyota – Advanced Development. Jejím hlavním cílem je uvést do života vizi „Měj rád mobilitu a žij bezpečně“. Součástí této skupiny jsou společnosti Woven Core (zabývá se převážně vývojem technologií autonomního řízení), Woven Alpha (má na starost strategii rozvoje Woven City a dalších inovačních projektů sahajících nad strategický rámec automobilky) a Woven Capital (připravuje strategické investice s partnery projektu).

Všechny dceřiné firmy se budou v rámci projektu Woven City specializovat na konkrétní cíle, které by ve výsledku měly znamenat komplexní přeměnu způsobů, jakými dnes lidé žijí, pracují a pohybují se. Prostředky k tomu samozřejmě budou hlavně technologické inovace a investice, a to především v oblastech, jako je autonomní řízení vozidel, automatizace řízení budov či dopravní infrastruktury, efektivnější a ekologičtější výroba a využití energie nebo robotizace výroby a služeb. Očekává se, že projekt přinese bezpočet výzkumných a pracovních příležitostí firmám a odborným institucím z celého světa.

Rukopis známého architekta

Architektonický návrh města připravil známý dánský architekt Bjarke Ingels, autor či spoluautor takových projektů, jako je nová výšková budova World Trade Center v New Yorku, Lego House v Dánsku nebo sídlo Googlu v americkém Mountain View.

Podle jeho návrhu by ve Woven City měly vzniknout tři typy nadzemních komunikací, které se budou nacházet v jedné terénní rovině, budou se tedy vzájemně protínat. Jeden typ bude vyhrazen pro autonomně řízená vozidla, jeden pouze pro chodce a jeden pro chodce, kola, koloběžky, segwaye a další podobná vozítka. Tyto tři typy ulic doplní ještě čtvrtý – podzemní ulice, které budou sloužit výhradně k přepravě zboží.

Podle plánů Toyoty by zpočátku mělo ve městě žít asi 360 obyvatel, převážně z řad seniorů, rodin s dětmi a výzkumníků procujících v Toyotě, resp. ve Woven City. Jejich počet by měl postupně vzrůst až na více než 2 000 lidí.

Všechny byty a domy budou splňovat kritéria tzv. chytrého bydlení. To znamená, že budou vybaveny nejmodernějšími technologiemi tak, aby jejich provoz byl maximálně energeticky úsporný a přitom přispíval k vysokému komfortu bydlení. Spotřebiče budou například schopny komunikovat s automobily, takže ve chvíli, kdy se spotřebič dozví, že auto s majitelem domu se blíží, zapne se konkrétní spotřebič (topení, klimatizace) nebo se provede potřebný úkon. Spotřebiče, vybavené prvky umělé inteligence se také budou samy přizpůsobovat obvyklému chování obyvatel domu či bytu, resp. vnějším klimatickým podmínkám, ať už se jedná o regulaci vytápění, klimatizace, osvětlení či zabezpečovacích prvků. Cílem je, aby se obyvatel domu či bytu cítil pokud možno neustále komfortně, a to při co nejmenší energetické náročnosti.   

Dále rozvíjet získané znalosti a zkušenosti

Slavnostního zahájení stavby experimentálního města se zúčastnil i prezident Toyoty Akio Toyoda, guvernér prefektury Šizuoka Heita Kawakatsu, generální ředitel firmy Woven Planet James Kuffner nebo prezident doslouživšího výrobního závodu Toyoty Higashi-Fuji (TMEJ), na jehož místě Woven City vzniká, Kazuhiro Mijauči.Rozvíjet

„Závod Higashi-Fuji zde za podpory místních obyvatel fungoval 53 let. Znalosti a zkušenosti, kterými přispěli všichni dosavadní pracovníci tohoto závodu, je nutné zužitkovat i v další kapitole. S ohledem na skutečnost, že Woven City nebude stát na zelené louce, ale v místech, kde se psala historie závodu Higashi-Fuji, nabídnu do budoucna nejvyšší možnou míru spolupráce,“ nechal se slyšet Kazuhiro Mijauči.

Závod za dobu své existence vyrobil 7,52 milionu vozidel, včetně známých modelů, jako byly Toyota Sports 800, Mark II, Corolla Levin / Sprinter Trueno, Crown, Century a JPN Taxi. Podle slov Akia Toyody byly tyto vozy opravdovou „hnací silou motorizace Japonska“.

Dojde i na vodík

Důležitou součástí experimentu Woven City je i zkoumání možností výroby a využití vodíku. Toyota se za tímto účelem spojila se společností ENEOS. Cílem jejich spolupráce bude vytvořit z Woven City komunitu s celosvětově největším podílem vodíku na energetické spotřebě a ukázat tak světu směr, kterým je možné dosáhnout uhlíkově neutrální společnosti do roku 2050. K tomu se ostatně zavázalo celé Japonsko i mnoho dalších zemí.

ENEOS je ve vodíkovém byznysu již zkušenou firmou, ve čtyřech hlavních metropolitních oblastech Japonska provozuje 45 vodíkových čerpacích stanic. Zabývá se jak vývojem technologií na výrobu zeleného vodíku, tak budováním celého dodavatelského řetězce.

Spolupráce se společností ENEOS bude probíhat v několika různých oblastech. Jedním z plánovaných projektů je například vybudování vodíkové stanice v těsné blízkosti Woven City. ENEOS pro ni bude zajišťovat samotnou výrobu zeleného vodíku, tedy vodníku z obnovitelných zdrojů. O zásobování města vodíkem se postará Toyota, která v něm nainstaluje stacionární generátory s palivovými články.

Před 25 lety, v létě 1996, vyjeli na americké silnice zákazníci s elektromobily GM EV1. Byla to velká událost, ale nakonec vše skončilo neslavně. Na motivy osudu tohoto projektu byl v roce 2006 dokonce natočen dokumentární film „Kdo zabil elektromobil?“.

Koncern General Motors dnes vehementně jede na elektrické vlně, svůj první elektromobil ovšam začala firma vyrábět již před čtvrtstoletím. Projekt tehdy vznikl na základě kalifornského programu ZEV (Zero Emission Vehicle), vyžadující, aby v tomto americkém státě silně postiženém smogem bylo od roku 1998 2 % prodaných automobilů s nulovými emisemi, 5 % od roku 2001 a 10 % od 2003. Kromě GM se do něj zapojily japonské automobilky Honda, Nissan a Toyota.

GM vyšel z konceptu, který v roce 1990 představil na autosalonu v Los Angeles. Byl futuristicky vyhlížející dvoumístný vůz s pracovním označením Impact a vzbudil velké pozdvižení. Příprava výroby sériová verze nazvané GM EV1 začala o tři roky později.

Z důvodu vysoké pořizovací ceny 33 995 USD byl zvolen systém tříletého pronájmu. Vozy se nakonec začaly nabízet až od konce roku 1996 prostřednictvím sítě autorizovaných dealerů značky Saturn v Kalifornii a Arizoně. Podle původního plánu se měl po jeho uplynutí umožnit pronajímatelům odprodej vozů.

To se však nakonec nestalo: po ukončení projektu v roce 2003 koncern GM na základě dohody zúčastněných automobilek všechny vozy až na pár, které se získaly muzea a vědecké instituce, nechal sešrotovat. Poslední exempláře z dobíhajících leasingů čekal tento osud v roce 2005. Protesty majitelů s odkazem na příslib možného odkupu nepomohly. Byli i tací, kteří svým vozům uspořádali jakýsi imaginární pohřeb.

Pokrokář

Oproti vozům japonských značek (Honda EV Plus, Toyota RAV4 EV) byl model EV1 od základu novou, pokrokovou konstrukcí s centrálně umístěnými akumulátory a moderním přístrojovým vybavením. Dvoumístné kupé s nosným hliníkovým rámem a plastovou karoserií se mohlo pyšnit velmi nízkým součinitelem odporu své plastové karoserie.

První generace GM EV1 vyráběná v letech 1996 až 1999 používala olověné baterie od firmy Delco, které jí umožňovaly dojezd pouze 90 až 100 km, vylepšené modely s olovo-gelovými baterie Panasonic ale ujely již 120 až 150 km.

Druhá generace (1999 až 2002) dostala již Ni-MH akumulátory dceřiné společnosti GM Ovonic Batteries, s nimiž se prodloužil dojezd až na slibných 250 km. Nejvyšší rychlost u všech verzí přitom byla elektronicky omezena na 130 km/h.

Vůz s třífázovým synchronním elektromotorem s výkonem 102 kW měl poháněná přední kola prostřednictvím převodovky s jedním stupněm pro jízdu vpřed a zpátečkou. Vybaven byl mimo jiné i systémem kontrolujícím tlak v pneumatikách. Zajímavostí byla i numerická klávesnice pro kódování zamykání.

O projektu byl v roce 2006 natočen dokumentární film „Kdo zabil elektromobil?“, pojednávající o tom, že o konec GM EV1 se postarala petrolejová lobby. Patentová práva na baterie prý údajně koupila ropná společnost Chevron, která je zablokovala pro jakékoliv další použití v dopravních prostředcích.

Pravda je ale asi spíše někde jinde. V průběhu let se totiž změnila legislativa a požadavek prodeje určeného podílu vozů s nulovými emisemi dostal dodatek, že se budou vyrábět jen na základě poptávky. Ta byla velmi vlažná a výrobní náklady vysoké, větší rozšíření navíc brzdil nedostatek kvalitních a levných akumulátorů.

Udržovat těchto 1 117 vozů v provozu a dodávat jim náhradní díly se jevilo jako hodně drahý špás, byť toho u GM dnes možná litují. V roce 2005 byla sešrotována poslední várka GM EV1, aby o rok později odstartovaly vývoj Chevroletu Volt.

Electra, která provozuje síť ultrarychlých dobíjecích stanic, oznámila, že od svých investorů získala 15 milionů eur (cca 380 milionů korun). Jde o zatím nejvyšší částkou získanou nějakým francouzským start-upem v prvním kole (“seed-round”) financování. Toto první kolo financování umožní společnosti splnit cíle s nasazením technologie v Ile-de-France, Lyonu a Lille, investovat do výzkumu a vývoje.

Electra byla založena v roce 2021 a ve svých kancelářích v Paříži zaměstnává 15 lidí (do konce roku by to mělo být cca 50). Cílem společnosti je urychlit přechod na elektromobilitu vybudováním sítě jednoho tisíce ultrarychlých dobíjecích stanic do roku 2030. Bezprostřednějším jejím cílem je nasadit první várku 50 ultrarychlých dobíjecích stanic do konce tohoto roku.

Společnost chce nabídnout jednoduchý a intuitivní systém nabíjení – a také přizpůsobené vývoji trhu a vozidlům, která umožňují stále vyšší rychlosti dobíjení. Startup totiž předpovídá, že dobíjení elektromobilu v roce 2030 bude téměř stejně rychlé jako dnešní tankování.

Nabíjecí stanice Electra se již zřizují ve městech po celé Francii. Umístěny bývají v nákupních centrech a supermarketech, hotelech a u provozovatelů parkovišť. Společnost se snaží uživatele získat jednoduchým provozem a láká je také možnost dát si během dobíjení například nějaké jídlo nebo svačinu.

Ceny dobíjení na rychlých dobíjecích stanicích společnost by měly být podobné jako v Česku. Zákazníci by měli platit buď 0,37 eura (cca 9,50 Kč) za kWh v případě větších odběratelů (flotil), či 0,44 eura za kWh pro jednotlivé zákazníky. To při průměrné spotřebě elektromobilů kolem 20 kWh na 100 kilometrů znamená cenu 2 korun na kilometr. Což výrazně ovšem snižuje finanční motivaci pořídit si elektromobil, protože jde o cenu plně srovnatelnou s vozem na běžné palivo. Nemuselo by to vadit, pokud se naplní (zatím dosti optimistcky) předpoklád firmy, že ceny elektromobilů klesnou v příštích pěti až šesto o polovinu.

Přijde boom?

Francie zažívá stejně jako jiné evropské země v posledním roce výrazný nárůst počtu prodaných vozidel na elektrický pohon, ovšem samozřejmě z velmi nízkých čísel. V koronavirovém roce ovšem především výrazně, zhruba o čtvrtinu, klesl počet prodaných klasických vozů.

Jak vysvětluje Aurélien de Meaux, generální ředitel a spoluzakladatel společnosti Electra, svým způsobem k tomu mohla přispět i pandemie, která zvýšila zájem o udržitelná a zároveň dostupná řešení: “Během prvního lockdownu v roce 2020 jsme si uvědomili, že žijeme v méně hlučných a méně znečištěných městech. Všem se nám líbí představa, že za 20 let budou naše města díky elektromobilitě volně dýchat, že budou klidnější a příjemnější místo k životu. Úplná elektrifikace všeho, od jednostopých vozidel až po automobily, je jen otázkou času.”

Nejen Electra, ale i další hráči na elektromobilním trhu doufají, že by mohly část z těchto chybějících prodejů získat pro sebe. Kdyby řídiči neměli obavy z toho, že nebudou mít kde nabíjet, naděje na úspěch takové strategie samozřejmě je výrazně vyšší. V tomto ohledu je situace podobná prakticky po celé Evropě. Nenastala vhodná chvíle pro podobně ambiciózní cíle i u nás, kde dobíjecí infrastruktura je hodně “děravá”? Další osud Electry by možná mohl leccos napovědět.

Společnost Panasonic, která dodává společnosti Tesla od počátků její činnosti v Silicon Valley lithium-iontové články do baterií, údajně prodala celý svůj podíl v automobilce Elona Muska. Tvrdí ovšem, že obchodní vztahy obou firem se tím nijak nezmění.

Japonský elektronický gigant se sídlem v Ósace se podle zprávy agentury Nikkei Asia zbavil svých akcií Tesly během fiskálního roku, který skončil 31. března 2021. Prodej cenných papírů pravděpodobně představoval velkou část z 3,9 miliardy dolarů, které Panasonic ve výročních zprávách vykázal jako “výnosy z prodeje a odkupu investic” a které budou použity na financování nových investic, uvedl Nikkei.

Panasonic původně koupil 1,4 milionu akcií po 21,15 USD v době IPO společnosti Tesla v červnu 2010. Společnost uvedla, že její podíl měl na konci března 2020 hodnotu přibližně 730 milionů USD, tedy před loňským rozdělením akcií Tesly v poměru 5:1 a masivním nárůstem ceny v průběhu konce roku 2020. Na základě této pozice z předchozího roku by měl podíl společnosti Panasonic hodnotu 4,6 miliardy dolarů, pokud by neprodala žádné akcie. Společnost Tesla zprávu zatím veřejně nekomentovala.

Spolu s Toyotou a Daimlerem, automobilkami, které investovaly do Tesly a spolupracovaly s ní v jejích počátcích (a v případě Toyoty jí prodaly rozsáhlý montážní závod), se Panasonic ukázal být mimořádně cenným partnerem. Pro vozidla společnosti Tesla dodává stále větší množství lithium-iontových článků a úzce spolupracuje s konstruktéry společnosti Tesla na úpravách jejich chemie a konstrukce za účelem jejich optimalizace pro použití ve výkonných elektromobilech. Panasonic spolupracuje se společností Tesla také v její továrně Gigafactory ve Sparks v Nevadě a dříve pro ni vyráběl produkty pro solární energii v závodě automobilky v Buffalu ve státě New York, než tam v létě 2020 ukončil činnost.

Panasonic hodlá Muskově společnosti nadále dodávat články a spolupracuje s ní na nové generaci baterie, kterou Musk podrobně představil v roce 2020. “Náš vztah s Teslou jako obchodním partnerem se do budoucna nezmění,” uvedl manažer společnosti Panasonic, jehož jméno Nikkei neuvedl.

Načíst další