Poptávka po bateriích by se mohla během příštích osmi let zvýšit 15krát, odhaduje analytická společnost Rystad Energy. Podle analytiků není jisté, zda nabídka udrží s rychlým růstem poptávky krok.

Rychlému růstu poptávky po bateriích v poslední době vše přeje. Jako by nestačil plánovaný přechod k elektromobilitě v celé řadě velkých ekonomik od Evropy po Čínu, či širokou podporu obnovitelných zdrojů, přišel ještě ruský útok na Ukrajinu. V jeho důsledku lze očekávat ještě zrychlení odklonu od fosilních paliv minimálně v Evropě.

Nárůst poptávky po bateriích měl být i tak v příštích letech ohromný, odhadovala na začátku března analytická společnost Rystad Energy. Podle jejího odkadu by se do roku 2030 mohla poptávka přiblížit devíti terawatthodinám (TWh) ročně, což je patnáctinásobek úrovně z roku 2021.

Z nedávné minulosti jsme přitom byli zvyklí na rychlý pokles cen baterií. Podle dat Rystadu celosvětová poptávka po bateriích v roce 2021 činila 580 gigawatthodin (GWh), což je více než dvojnásobek roku 2020, přesto s ní nabídková strana (tedy výroba) dokázala držet krok. Trend se ovšem v příštích letech podle analytiků firmy může změnit, protože zájem o bateriové technologie v osobních vozidlech a stacionárních úložištích výrazně vzroste, což zatíží dodavatelský řetězec.

Tato prognóza poptávky je v souladu se scénářem globálního oteplování o 1,6 stupně a se změnami, které vyžadují energetické systémy. Není také omezena žádnými potenciálními problémy s dodávkami. Z hlediska komponent budou v tomto desetiletí trhu dominovat lithium-iontové baterie, ačkoli kolem roku 2030 by měla začít růst poptávka po sodíkových bateriích (ty jsou určeny především pro stacionářní úložiště baterie).

Nejvýznamnější podíl na budoucím růstu baterií budou mít osobní elektromobily, které budou do konce desetiletí představovat přibližně 55 % celkové poptávky. Očekává se, že poptávka po těchto bateriích dosáhne do roku 2030 4,9 TWh, což je více než 13krát více než relativně malá celková hodnota 373 GWh v roce 2021.

Dalším nejvýznamnějším tahounem poptávky budou stacionární úložiště s předpokládanou poptávkou více než 2,5 TWh v roce 2030, tedy zhruba 29 % celkového trhu. Potřeba skladování by měla prudce vzrůst ze 139 GWh v roce 2021, protože v energetickém mixu by v souvislosti s odklonem světa od fosilních paliv měly hrát stále větší úlohu obnovitelné zdroje energie. To zvýší potřebu skladování elektřiny v době, kdy je výkon obnovitelných zdrojů energie vysoký, na období, kdy výkon klesá, například v době, kdy je rychlost větru nízká, jak se stalo v Evropě v loňském roce. Pro tvorbu stacionárních úložišt je možné využívat starší baterie z elektromobilů, ovšem těch bude v dohledné době nedostatek. Významnou roli v tomto sektoru začnou podle odhadů hrát až po roce 2040.

Uloženo v sodíku

Sodíkové baterie jsou robustní typ úložiště využívající anorganických elektrolytů. Během vybíjení záporná sodíková elektroda oxiduje na oxid sodný a na rozhraní elektrody a elektrolytu se vytváří sodíkové ionty. Ty putují přes membránu z oxidu hlinitého (Al2O3) na kladnou elektrodu, kde se redukují za vzniku sulfidu sodného (Na2S4). Při nabíjení probíhá pak proces opačný.

U sodíko-sírových baterií a dalších podobných typů, jako jsou třeba vanadové průtokové baterie, určuje celkovou kapacitu do značné míry velikost „nádrže“ na kladný a záporný elektrolyt, které jsou samy o sobě poměrně levné. Stejně jako u jiných průtokových baterií, například vanadových redox baterií, je tedy poměrně levné navýšit kapacitu úložiště, naopak je relativně drahé zvyšovat jejich výkon, jinak řečeno velikost aktivní plochy a počet článků v bateriovém svazku.

Tento typ bateriá by měl být podstatně odolnější vůči provoznímu opotřebení než lithium-iontové baterie. Ovšem technologie se v praxi příliš nepoužívá, a tak jsou zatím podobné údaje založené na velmi omezeném množství reálných dat. Ale několik komernčních společností přesto už chce začít, nebo začíná s komerčními dodávkami.

Elektrifikace se v budoucnu dočkají především lehká a středně těžká užitková vozidla, která do roku 2030 přispějí k poptávce přibližně 1 TWh. Elektrifikovaná letecká a lodní doprava budou mít rovněž potřebu baterií, ale celková poptávka z těchto odvětví nebude mít na globální obrázek významný vliv.

„Růst poptávky po bateriích je s urychlujícím se přechodem na energetiku nevyhnutelný, ale globální nabídka bude bez výrazných investic nebo zlepšení technologie baterií v nejbližší budoucnosti nedostatečná. Na základě oznámených cílů dosáhne nabídka baterií do roku 2030 5,5 TWh, což pokryje pouze asi 60 % očekávané poptávky. Po celém světě se rychle staví gigatovárny a tento výhled dodávek se pravděpodobně změní. Přesto nelze význam těchto pokračujících investic podceňovat,“ uvedl v tiskovém prohlášení Marius Foss, vedoucí globálních energetických systémů ve společnosti Rystad Energy.

Asie na prvním místě

Poptávce po bateriích bude do roku 2030 dominovat Asie, konkrétně především Čína. V daném modelu a při předpokládaném tempu klimatických změn (která může ovlivnit mimo jiné i ochotu veřejnosti k elektřifikaci a její podpoře) se asijská poptávka na celosvětovém trhu s bateriemi bude podílet ze 41 procent a dosáhne 3,6 TWh.

Aby Čína uspokojila domácí i mezinárodní poptávku, hodlá do roku 2030 pokrýt 50 % celosvětové výroby článků, což urychlí ambiciózní plány domácích výrobců, jako jsou CATL, Gotion High-Tech a SVOLT. Naléhavá poptávka na domácím trhu a dohody o odběru s několika předními výrobci automobilů na celém světě jsou hnací silou plánovaného prudkého rozšíření kapacity výroby článků v regionu.

Také evropská a severoamerická poptávka po bateriích se bude do konce desetiletí neustále zvyšovat a dosáhne 1,9 TWh, resp. 1,7 TWh. Výrazně vzrostou i trhy na Blízkém východě a v Jižní Americe, ale těmto třem největším regionům se nepřiblíží. Poptávka v Africe se bude v příštích několika letech postupně zvyšovat a poté se podle modelu Rystadu prudce zvýší o více než 350 % z 50 GWh v roce 2027 na 227 GWh o pouhé tři roky později.

Několik regionů urychluje úsilí o rozvoj domácího dodavatelského řetězce, aby se vyhnulo přílišné závislosti na dovozu baterií z Asie. V Severní Americe bylo v roce 2021 oznámeno 10 velkých závodů, z nichž sedm je součástí společných podniků mezi výrobci článků a automobilkami.

Přibližně 77 % nově oznámených projektů v tomto regionu tvořily v loňském roce „joint ventures“. V Evropě je rozšíření dodávek baterií zřejmě motivováno snížením závislosti tamního autoprůmyslu na Asii. Více než polovina plánovaných projektů je určena k lokalizaci výrobních kapacit. Zhruba třetina všech oznámených projektů na stavbu nových výrobních kapacit baterií či článků jde na vrub právě evropským výrobcům.

Proč baterie zlevňují?

Když se dnes mluví o bateriích, často se opakuje, že jsou stále příliš drahé. Ovšem na začátku 90. let, kdy se na trhu poprvé objevily dnes dominantní “li-onky”, byly přímo nekřesťanské drahé: zhruba 30krát dražší než dnes. Podle nedávné studie totiž cena lithiových akumulátorů za poslední tři desítky let klesla zhruba o 97 procent. Co za tímto rychlým poklesem cen stálo?

Na to se pokusila odpovědět v nové práci skupina odborníků z MIT. Podle nich byly zdaleka nejsilnějším faktorem úspěšné investice do výzkumu a vývoj, zejména v oblasti chemie a materiálových věd.

Jejich přínos byl větší než úspory z rozsahu – tedy úspory dané tím, že se baterie začaly vyrábět skutečně ve velkém v optimalizovaných závodech (ovšem úspory z rozsahu přispěly ke snížení cen druhým největším dílem). Nová zjištění byla zveřejněna v článku, který vydal odborný časopis Energy and Environmental Science.

Zjištění by mohlo údajně pomoci i při dalším plánovaní firem i států v této oblasti. Profesorka Jessika Tranciková (skutečně se píše s “k”) se nechala slyšet, že i další výhledy jsou poměrně optimistické, alespoň tedy podle analýzy, kterou udělal její tým. V technologii elektrochemických baterií jsou prý stále ještě značné rezervy a tedy prostor pro další pokles cen.

Autoři dospěli k závěru, že více než polovina z celkového poklesu ceny je důsledek úspěšného výzkumu a vývoje. Tam autoři zahrnuli veškerý výzkum a vývoj bez ohledu na zdroj a formu financování: patří tam R&D v soukromém sektoru, tak ve státních či veřejně financovaných institucích. Dritvá část tohoto poklesu nákladů v rámci této kategorie výzkumu a vývoje byla důsledek pokroku v chemickém a materiálovém výzkumu.

To není samozřejmě. Odobrníci se pokoušeli v minulosti přistupovat v k problému z různých úhlů a různých stran. Vylepšovala se konstrukce samotných bateriových článků, výrobní zařízení a postupy, docházelo (a dochází) k neustálé optimalizaci dodavatelských řetězců atd.

Z hlediska strategie podpory výzkumu a vývoje je zajímavé i to, že pokles ceny byl z velké části výsledkem investic realizovaných až po komercializaci technologie lithium-iontových baterií. Tedy ve fázi, kdy se někteří analytici domnívali, že přínos výzkumu bude méně významný. Ve skutečnosti hrál ovšem tento vliv ve snížování ceny hlavní vliv ještě téměř čtvrt století po uvedení baterií na trh.

Společnost Panasonic začne v příštím roce vyrábět ve velkém nový typ článků pro elektromobilitu, typ 4680. Umožní uložit do stejného objemu více energie. Díky řadě inovací by však především měly být znatelně levnější.

Panasonic začal vyvíjet nové bateriové články 4680 na žádost společnosti Tesla. Americká „elektromobilka“ uvádí, že její současná vlajková loď, Model S, má dojezd na jedno nabití přibližně 650 km. S novou baterií by se tak dojezd mohl zvýšit přibližně na 750 km.

To není sám o sobě rekord. Například Mercedes-Benz plánuje v letošním roce zahájit sériovou výrobu nového modelu, který na jedno nabití ujede 1 000 kilometrů. Využívat by měl baterii vyrobenou čínskou společností CATL. Celosvětový závod ve vývoji bezpečnějších, levnějších baterií s dlouhou životností prostě nabírá na obrátkách.

Velkou výhodou nového typu 4680 by ovšem měla být cena, o kterou v případě elektromobilů jde dnes především. Vzhledem k vysoké účinnosti bude výroba těchto nových baterií na základě kapacity o 10 až 20 % levnější než u starších verzí.

Nový závod

Společnost Panasonic podle informací serveru Asia Nikkei, který s informací přišel jako první, rozšiřuje svůj závod v prefektuře Wakayama. Instaluje v něm nové zařízení pro hromadnou výrobu nových článků. Celková investice činí zhruba 700 milionů dolarů, tedy nějakých 15 miliard korun.

O roční výrobní kapacitě továrny ve Wakayamě se stále jedná, ale očekává se, že bude činit přibližně 10 gigawattů ročně, což je zhruba pro 100 000 – 150 000 elektromobilů podle typu a kapacity baterie.

Společnost již dnes provozuje několik závodů na výrobu baterií pro elektromobily v Japonsku a USA. Je dlouhodobým partnerem společnosti Tesla, i když původně velmi těsná spolupráce se postupně rozvolnila. Nový závod by představoval zhruba pětinu celkové roční výrobní kapacity Panasonicu.

Vzhledem k tomu, jak ohromný zájem o baterie se v příštích letech očekává, to není mnoho. Dá se tedy očekávat, že pokud se osvědčí, na nový standard budou postupně přecházet další a další výrobní závody společností. Společnost má v plánu rozšířit masovou výrobu v závodech v USA nebo v dalších zemích.

Japonská firma plánuje částečné zahájení provozu v letošním roce, aby zvládla všechny potřebné postupy spolehlivě a efektivně ještě před zahájením masové výroby v příštím roce.

Model článku 4680 společnosti Tesla (kredit Reddit user u/Bimmer3389)
Model článku 4680 společnosti Tesla (kredit Reddit user u/Bimmer3389)

Díky poptávce společnosti Tesla míval Panasonic lví podíl na trhu s bateriemi pro elektromobily. Společnosti CATL a LG Chem však v roce 2019 začaly dodávat baterie do závodu Tesla v Číně, čímž Panasonic ztratil podíl na trhu, který se nyní snaží získat zpět vývojem nové baterie.

Největší světoví výrobci baterií pro elektromobily (údaje za první polovinu roku 2021)

PořadíFirmaOdběrateléVýroba (v GWh)Tržní podíl (v %)Růst mezi lety 2016 a 2020 (v %)
1Contemporary Amperex Technology Co. (CATL)BMW, Dongfeng Motor Corp. Honda, SAIC Motor Corp. Stellantis, Tesla, Volkswagen Group, Volvo Car Group21,5263400
2LG Energy SolutionGeneral Motors, Groupe Renault, Stellantis, Tesla, Volvo, VW Group21,4261193
3PanasonicTesla, Toyota14,117214
4Samsung SDIBMW, Ford, Stellantis, VW Group5,57399
5BYD Co.BYD, Ford5,57113
6SK InnovationDaimler, Ford, Hyundai, Kia3,44226
7China Aviation Lithium Battery (CALB)GAC Motor, Zhejiang Geely Holding Group Co.2,73321
8Gotion High-TechChery Automobile Co., SAIC, VW Group1,4223
9Automotive Energy Supply Corp. (AESC)Groupe Renault, Nissan1,4246
10Ruipu Energy Co. (REPT)Dongfeng, Yudo Auto0,61100
Další4,25122
Celkem81,6100355
Největší dodavatelé baterií pro elektromobily od ledna do května 2021. (Zdroje: IEEE Spectrum, Adamas Inteligence, Businesskora, Electrive, BMW, Ford, Honda, Volvo)

Trocha přehánění, hodně vylepšení

Články v bateriových souborech modelů Tesly dodnes velmi nápadně připomínají tužkové baterie. První generace článků Tesly se tak nazývala 18650, protože měla rozměry 18 na 65 milimetrů (tužkové baterie AA mají 14,9 na 50 mm, tyto první baterie Tesly tedy nebyly o mnoho větší). Pak přišly větší 2170 (21 na 70 mm), které měly tedy zhruba o polovinu větší objem. V září 2020 pak Tesla oznámila přechod na větší články 4680, které už mají zhruba pětkrát vyšší kapacitu než původní články 18650.

K tomuto údaji jedna poznámka, která dobře vystihuje Muskův postoj k reklamě a marketingu: během prezentace nového typu článku v září 2020, během tzv. Battery Day, se opakovaně mluvilo o několikanásobně vyšší kapacitě. Nikdo ovšem zároveň jedním dechem nedodal, že zvýšení kapacity je dáno téměř úplně prostě zvýšením objemu baterie. Ne že by Tesla vysloveně lhala. Neudělala ale nic pro to, aby nezkušený posluchač nedošel ke špatnému závěru.

Vysloveně nepřesné pak bylo tvrzení, že nové baterie v automobilech Tesla jsou unikátní svou „strukturální konstrukcí“. To jednoduše znamená, že články jsou v baterii (paralelně) zapojeny co nejefektivněji, tedy aby se uspořilo místo a hmotnost. Ale stejný princip už používají i další výrobci, například v mikroelektromobilu Wuling Mini.

Skutečných novinek je ale i přes tyto výhrady dost. Jedna spočívá ve způsobu odvodu a přívodu elektřiny ze samotného aktivního materiálu na póly baterie. To mají na starost v článcích malé vodivé prvky – anglicky nazývané „tabs“ – obvykle vyrobené z niklu, hliníku, případně mědi. „Tabs“ jsou jedním ze slabších míst baterie. Když se baterie rychle nabíjí či vybíjí, právě v těchto kovových prvcích vzniká velké množství tepla – což je pro lithiovou baterii samozřejmě velký problém.

Tesla si v roce 2020 podala patent na baterie, které se bez těchto vodivých prvků mají zcela obejít (baterie s „tabless“ elektrodami). Změna by měla údajně výrazně zjednodušit výrobu. Umísťování a připevňování „tabů“ totiž podle Muska i Baglina výrazným způsobem zdržovalo výrobu článků. Proces není okamžitý, a tak se kvůli němu musí článek na své cestě linkou zastavit. Bez těchto prvků se údajně může linka pohybovat v podstatě kontinuálně. Můžeme si ji údajně představit jako například plnicí linku na nápoje.

Odstranění kovových prvků by také mělo údajně velmi výrazně snížit množství odpadního tepla, které vzniká při rychlém nabíjení baterií. Což v důsledku může vést k nabíjení většími proudy, a tedy zkrácení zastávek na dobíjecích stanicích.

Samozřejmě to je spíše hypotetická úspora. Rychlost dobíjení do značné míry záleží na parametrech samotných nabíječek, které provozovatel z pochopitelných důvodů nemůže měnit každý rok. Doma také tak velkými proudy těžko bude někdo dobíjet. „Tabless“ baterie by však mohly mít například zvýšenou životnost. Vyšší teploty bateriím rozhodně neprospívají.

Pohled do nitra "beztabového" článku 4680 společnosti Tesla (foto Tesla)
Pohled do nitra „beztabového“ článku 4680 společnosti Tesla (foto Tesla)

Bez kanálů

Novým typem baterie by měla Tesla do jisté míry i dohnat konkurenci. Ještě v Modelu 3 totiž používá systém chlazení, který nepatří mezi nejefektivnější. Mezi řadami článků má kanálky na odvod odpadního tepla, které vlastně nejsou zapotřebí. Většina tepla totiž vzniká na obou koncích článků. Dělat mezi nimi místo na kanály je podle jiných výrobců a znalců oboru v podstatě zbytečné.

Samozřejmě, znalcům nemusíte věřit. V případě Tesly se už mnohokrát mýlili. V tomto případě ale v podstatě uznává svou chybu i firma sama. Nové „balení“ baterie kanálky mezi články mít nebude, místo toho budou články umístěny na kapalinou chlazené desce. Velmi podobně jako to je u elektromobilů GM, Fordu, Volkswagenu, Porsche a tak dále a tak podobně.

Místo by se mělo uspořit i jinak. Konstruktér a konzultant Sandy Munro, který proslul svým YouTube kanálem, kde rozebírá elektromobily, nedávno odhadl, že Tesla dokáže zvýšit výkon bateriových celků o více než 50 procent při zachování stejných rozměrů. Do rozměrů baterie pro Teslu 3, která má kapacitu 72 kWh, by se podle něj mohla vejít nová baterie s kapacitou cca 130 kWh.

Kromě zmíněné úspory vzniklé změnou chladicího systému by k tomu měly významně přispět i další změny v konstrukci. Více dílů by mělo být slepováno a také svařované části konstrukce se dají udělat efektivněji. Celkem by tak nové bateriové celky podle něj mohly obsahovat o 30 až 40 procent méně oceli.

Proč baterie zlevňují

Nový článek je také ilustrativním příkladem obecnějšího trendu. Nejsilnějším faktorem v dosavadním velmi rychlém zleňování lithiových baterií byly totiž úspěšné investice do výzkumu a vývoje. Jejich přínos byl větší než úspory z rozsahu – tedy úspory dané tím, že se baterie začaly vyrábět skutečně ve velkém v optimalizovaných závodech (ovšem úspory z rozsahu přispěly ke snížení cen druhým největším dílem). Takový je alespoň závěr analýzy vydané nedávno v odborném časopise Energy and Environmental Science.

Podobné cenové analýzy bývají obtížné, protože většina relevantních informací se skládá z přísně chráněných obchodních údajů. „Prošli jsme akademické články, průmyslové a vládní zprávy, tiskové zprávy a specifikační listy. Dokonce jsme se podívali na některá právní podání. Museli jsme dát dohromady data z mnoha různých zdrojů, abychom získali představu o tom, co se v oboru vlastně děje,“ přiblížil práci týmu Micah Ziegler z MIT v tiskové zprávě.

Říká, že tým nakonec shromáždil „přibližně 15 tisíc kvalitativních a kvantitativních datových bodů v tisícovkách záznamů (zpráv, dokumentů, článků atp.). Podle týmu byly nejméně spolehlivé (a také nejhůře dostupné) údaje z prvních let po uvedení tohoto typu baterií na trh. Nejistoty dokáže potlačit porovnání různých zdrojů dat ze stejného období, ale pouze do jisté míry.

Nakonec autoři dospěli k závěru, že více než polovina z celkového poklesu ceny je důsledek úspěšného výzkumu a vývoje. Tam autoři zahrnuli veškerý výzkum a vývoj bez ohledu na zdroj a formu financování: patří tam R&D v soukromém sektoru, tak ve státních či veřejně financovaných institucích. Drtivá část tohoto poklesu nákladů v rámci této kategorie výzkumu a vývoje byla důsledek pokroku v chemickém a materiálovém výzkumu.

To není samozřejmé. Odborníci se pokoušeli v minulosti přistupovat v k problému z různých úhlů a různých stran. Vylepšovala se konstrukce samotných bateriových článků, výrobní zařízení a postupy, docházelo (a dochází) k neustálé optimalizaci dodavatelských řetězců atd. Z hlediska strategie podpory výzkumu a vývoje je zajímavé i to, že pokles ceny byl z velké části výsledkem investic realizovaných až po komercializaci technologie lithium-iontových baterií. Tedy ve fázi, kdy se někteří analytici domnívali, že přínos výzkumu bude méně významný. Ve skutečnosti hrál ovšem tento vliv ve snižování ceny hlavní vliv ještě téměř čtvrt století po uvedení baterií na trh.

Trochu to osolíme…

Nový typ 4680 bude mít pozměněné například i elektrody. Jedna změna bude na tradičně uhlíkové anodě. Uhlík se pro anody používá, protože dobře vede proud, má ovšem poměrně malou kapacitu. Na uložení jednoho lithiového iontu je zapotřebí „klece“ tvořené šesti atomy uhlíku. Naproti tomu například jediný atom křemíku dokáže navázat čtyři atomy lithia.

Tato výhoda je dlouho známá a s křemíkem se hojně experimentovalo, bohužel má i nepříjemné vlastnosti. Významnou je, že po pohlcení elektronů „bobtná“ – velmi výrazně se změní jeho objem, a to několikanásobně (řekněme pro jednoduchost zhruba na trojnásobek původního). Pokud postavíte baterie z křemíku s pomocí běžných postupů, stačí jen několik nabití, anoda se roztrhá na malé kousky a celý článek je k ničemu.

Přesto se v anodách křemík už používá, a nejen u Tesly. Je to totiž jeden z nejnadějnějších způsobů, jak kapacitu baterií zvýšit. Ovšem v současných anodách je křemíku málo, řádově jednotky procent z celkového objemu. Příměs je tak malá, že nárůst objemu není velký problém a zvýšení kapacity o několik procent za něj stojí.

Na Battery Day zaznělo, že množství křemíku by se mělo zvýšit několikanásobně, aby se dojezd při zachování objemu baterie zvýšil cca o 20 procent. Problém s „bobtnáním“ chce Tesla vyřešit tak, že baterie nebude znovu čistě křemíková – bude obsahovat i elastické materiály, které se mohou zmenšit tak, aby se kompenzovalo zvětšování křemíku v anodě. Jak vidno, v tomto ohledu je ještě co zlepšovat.

Změny by se měly dotknout i druhé elektrody, tedy katody (poznámka bokem: v dobíjecích bateriích se samozřejmě role elektrod mění podle toho, zda se nabíjí, či vybíjí, ale pro zjednodušení se jako anoda obvykle označuje elektroda, na které během vybíjení dochází k oxidaci). V první řadě Tesla potvrdila, že se pokusí zbavit kobaltu v bateriích.

Jak již asi víte, kobalt se používá v katodě baterií, obvykle v kombinaci s niklem a manganem v podobě materiálu známého jako NMC. Kobalt je z těchto materiálu nejdražší, navíc je dnes jeho produkce vázána na problematickou těžbu v Kongu.

I proto se většina výrobců snaží kobaltu zcela zbavit. V minulosti byly v NMC ve stejném poměru 1 : 1 : 1 nikl, mangan a kobalt. V nových bateriích ovšem tvoří velkou část materiálu pouze nikl (někdy téměř 90 procent) a kobaltu je cca 5 procent. Tesla tedy znovu není jediná, je v podstatě ilustrací obecného trendu, který by měl zjednodušit a zlevnit výrobu baterií obecně.

Článek 18650 společnosti Panasonic určený pro elektromobily Tesla (kredit Tesla/Panasonic)

Nejlepší ve výrobě

Všechna dílčí zlepšení mají jeden hlavní cíl: výrazně zjednodušit, zrychlit, a tedy i zlevnit výrobu baterií ve velkém. Tesla, která sází na to, že investory naláká na velké cíle, tak především dala najevo, že hodlá ve výrobě baterií přejít na kvantitativně novou úroveň.

Firma si dala za cíl vyrobit ročně baterie s celkovou kapacitou od 10 do 20 terawatthodin. Celková roční výrobní kapacita je dnes o dva řády nižší, pohybuje se zřejmě někde v pásmu nad 300 GWh ročně. Rekordní Gigafactory v Nevadě, která ještě není dostavěna, je koncipována na výrobu kolem 150 GWh za rok.

Jak zvýšit výrobu řádově stokrát? Tesla má dva recepty. Stejně jako řada jiných firem samozřejmě chystá stavbu dalších továren na baterie. Ale zároveň tvrdí, že „zlepšováky“ představené v rámci Battery Day mohou velmi výrazně zvýšit výrobu v již stojících továrnách. Kontinuální výroba jednodušších baterií, které pojmou více energie, může údajně zvýšit produkci z jedné linky zhruba sedminásobně.

Toto číslo je nutné brát s rezervou, protože máme k dispozici pouze nablýskanou prezentaci a „tvrdá data“ jsou předmětem obchodního tajemství. Podle odhadů agentury Bloomberg se ceny baterií (kompletních baterií, ne pouze článků) v roce 2020 pohybovaly v průměru někde kolem 140 dolarů za kilowatthodinu. Na Battery Day se hovořilo o tom, že zavedení představených novinek by mělo cenu snížit zhruba o něco více než 50 procent.

Pokud by tomu tak bylo, cena by se měla dostat poměrně dosti hluboko pod bedlivě sledovanou hranici 100 dolarů za kilowatthodinu. Zhruba na ní by se přitom elektrické vozy mohly v pořizovací ceně začít rovnat vozům se spalovacím motorem. Tedy zhruba na úrovni nového modelu Tesly, jehož existenci Musk potvrdil v již zmíněné prezentaci na Battery Day. 

Lithium-iontové baterie spustila věk elektroniky do kapsy, a elektromobilů. Od svého uvedení na trh před třemi desetiletími naprosto radikálně zlevnily. Ale proč?

Když se dnes mluví o bateriích, často se opakuje, že jsou stále příliš drahé. Ovšem na začátku 90. let, kdy se na trhu poprvé objevily dnes dominantní „li-onky“, byly přímo nekřesťanské drahé: zhruba 30krát dražší než dnes. Podle nedávné studie totiž cena lithiových akumulátorů za poslední tři desítky let klesla zhruba o 97 procent. Co za tímto rychlým poklesem cen stálo?

Na to se pokusila odpovědět v nové práci skupina odborníků z MIT. Podle nich byly zdaleka nejsilnějším faktorem úspěšné investice do výzkumu a vývoj, zejména v oblasti chemie a materiálových věd.

Jejich přínos byl větší než úspory z rozsahu – tedy úspory dané tím, že se baterie začaly vyrábět skutečně ve velkém v optimalizovaných závodech (ovšem úspory z rozsahu přispěly ke snížení cen druhým největším dílem). Nová zjištění byla zveřejněna v článku, který vydal odborný časopis Energy and Environmental Science.

Zjištění by mohlo údajně pomoci i při dalším plánovaní firem i států v této oblasti. Profesorka Jessika Tranciková (skutečně se píše s „k“) se nechala slyšet, že i další výhledy jsou poměrně optimistické, alespoň tedy podle analýzy, kterou udělal její tým. V technologii elektrochemických baterií jsou prý stále ještě značné rezervy a tedy prostor pro další pokles cen.

Jak na to

Podobné cenové analýzy bývají obtížné, protože většina relevantních informací se skládá z přísně chráněných obchodních údajů. „Prošli jsme akademické články, průmyslové a vládní zprávy, tiskové zprávy a specifikační listy. Dokonce jsme se podívali na některá právní podání. Museli jsme dát dohromady data z mnoha různých zdrojů, abychom získali představu o tom, co se v oboru vlastně děje,“ příblížil práci týmu Micah Ziegler z MIT v tiskové zprávě.

Říká, že tým nakonec shromáždil „přibližně 15 tisíc kvalitativních a kvantitativních datových bodů v tisícovke záznamů (zpráva, dokumentů. článků atp.). Podle týmu byly nejméně spolehlivé (a také nejhůře dostupné) údaje z prvních let po uvedení tohoto typu baterií na trh. Nejistoty dokáže potlačit porovnání různých zdrojů dat ze stejného období, ale pouze do jisté míry.

Mnoho týmů, mnoho přístupů

Nakonec autoři dospěli k závěru, že více než polovina z celkového poklesu ceny je důsledek úspěšného výzkumu a vývoje. Tam autoři zahrnuli veškerý výzkum a vývoj bez ohledu na zdroj a formu financování: patří tam R&D v soukromém sektoru, tak ve státních či veřejně financovaných institucích. Dritvá část tohoto poklesu nákladů v rámci této kategorie výzkumu a vývoje byla důsledek pokroku v chemickém a materiálovém výzkumu.

To není samozřejmě. Odobrníci se pokoušeli v minulosti přistupovat v k problému z různých úhlů a různých stran. Vylepšovala se konstrukce samotných bateriových článků, výrobní zařízení a postupy, docházelo (a dochází) k neustálé optimalizaci dodavatelských řetězců atd.

První "gigatovárna": závod společností Tesla a Panasonic v Nevadě (kredit Tesla)
První „gigatovárna“: závod společností Tesla a Panasonic v Nevadě (kredit Tesla)

Byť za práci na vývoj lithiových baterií byla v roce 2019 oceněna Nobelovým výborem trojice vědců (více o nich v boxu na konci článku), inovace vedoucí k pokles ceny nejsou podle autorů nové studie dílem jednotlivců. Podle nich jde o plod dlouholetého úsilí mnoha lidí a mnoha týmů z různých pracovišť.

Z hlediska strategie podpory výzkumu a vývoje je zajímavé i to, že pokles ceny byl z velké části výsledkem investic realizovaných až po komercializaci technologie lithium-iontových baterií. Tedy ve fázi, kdy se někteří analytici domnívali, že přínos výzkumu bude méně významný. Ve skutečnosti hrál ovšem tento vliv ve snížování ceny hlavní vliv ještě téměř čtvrt století po uvedení baterií na trh.

Nejen pro baterie

Studie využila analytický přístup, který Tranciková a její tým původně vyvinuli pro analýzu podobně prudkého poklesu nákladů na výrobu křemíkových solárních panelů v posledních několika desetiletích. A využili ho také k analýze růstu nákladů na jadernou elektrárny ve Spojených státech. „Naše práce míří k pochopení základním mechanismům technologických změn,“ říká Tranciková.

Jednou z výhod metodiky, kterou Tranciková a její kolegové vyvinuli, je podle ní to, že pomáhá roztřídit relativní význam různých faktorů, když se mění mnoho proměnných najednou – právě to se totiž obvykle při zdokonalování technologií děje. „Nejde o prosté sečtení vlivu těchto proměnných na náklady,“ vysvětluje Tranciková, „protože mnoho z těchto proměnných ovlivňuje mnoho různých složek nákladů. Je to taková složitá síť závislostí.“

Práce by podle autorů mohla být vodítkem při schvalování veřejných výdajů na výzkum a vývoj, ale posloužit by mohla i soukromým investorům. Které faktory z těch, jenž mohou ovlivnit, skutečně mají ovlivňovat? Na co vynaložit dostupné zdroje?

John Goodenough slaví 95. narozeniny (foto UoT)
John Goodenough slaví 95. narozeniny (foto UoT)

Jak to bylo s vytvořením „lionek“

Když byli 9. října 2019 oznámeni nositelé Nobelovy ceny za chemii, málokdo byl překvapený. Medaili a s ní spojenou prémii dostali John B. Goodenough, Stanley Whittingham (oba USA) a Akira Jošino (Japonsko). V podstatě by se dalo říci, že cena byla očekávána. Proč? Protože všichni tři zcela zásadně přispěli k vývoji materiálů, které najdete v bateriích, jež pohánějí nejen všechny možné druhy elektroniky, ale také elektromobily. Cynicky řečeno se udělení ceny se očekávalo nejen kvůli významu objevu, ale také proto, že John Goodenough je ve velmi požehnaném věku (97 let), a Nobelova cena se neuděluje posmrtně (Dodejme, že John Goodenought stále žije a je dokonce i ještě vědecky aktivní, byť jeho některé nedávné výsledky nejsou příjimány úplně kladně.)

Z laického hlediska jsou současné „lithium-iontové“ baterie v principu poměrně jednoduchá zařízení. Tvoří je samozřejmě dvě elektrody oddělené membránami a tekutým elektrolytem, který představuje „dálnici“ pro nabité ionty putující od jedné elektrody ke druhé. Když se baterie nabíjí, kladná elektroda (katoda) ze slitiny lithia uvolňuje ionty. Ty se přesunují k záporné anodě, která je obvykle tvořena uhlíkem. Ionty z katody se skryjí v uhlíkových vrstvách anody, kde čekají, až bude energie v baterii zapotřebí. Pak začne celý proces probíhat opačně: ionty z anody putují na katodu, kde se setkají s elektrony přicházejícími z druhé strany sepnutého obvodu. Může se zdát nepochopitelné, proč trvalo tak dlouho, než taková baterie vznikla.

Už nejméně století víme, že lithium je díky svým vlastnostem ideální surovinou pro výrobu baterii. Ale v praxi byl tento kov nepoužitelný. Po téměř celé 20. století si tak lidstvo vystačilo s bateriemi, které z velké části vznikly ještě ve „století páry“. Například klasický olověný akumulátor byl poprvé postaven v roce 1859. Situace se začala měnit díky práci laureátů a mnoha dalších vědců zhruba od 70. let.

První krok udělal Stanley Whittingham, který vytvořil funkční baterii s jednou lithiovou elektrodou. Jak to občas ve vědě bývá, k výsledku dospěl dosti velkou náhodou: věnoval se výzkumu vhodných supravodičů (tedy látek, které vedou elektřinu zcela beze ztrát). Experimentoval se sulfidem titaničitým. Zjistil, že to sice není materiál supravodivý, ale mohl by velmi dobře fungovat jako elektroda v baterii. V podstatě si ho lze představit jako plástev s mnoha vrstvami, mezi které se schovávají ionty lithia. Baterii tedy stále „pohání“ lithium, ale může ho obsahovat méně a v méně nebezpečné formě.

Výsledek byl ovšem polovičatý: Whittingham postavil baterii s katodou ze svého nově objeveného zázračného materiálu a anodou z čistého lithia. Vznikla tak dobíjecí baterie s na svou dobu vysokou hustotou energie a vhodným rozsahem pracovních teplot. To se pozdávalo i managementu společnosti Exxon, která během tehdejší ropné krize po jediné čtvrthodinové schůzce další vývoj zafinancovala. Ovšem zároveň byl jeho výrobek dosti nebezpečný.

Požáry v Whittinghamově laboratoři byly údajně tak časté, že mu místní hasiči začali účtovat použití speciálních směsí nutných pro hašení lithia. Výkony baterie se i tak dařilo zlepšovat. V roce 1976 Whittingham veřejně oznámil svůj vynález a začal baterie vyrábět v malých sériích pro hodinářský průmysl. Ale rozšířit řady zákazníků se dařilo jen pomalu. Navíc na začátku 80. let klesla cena ropy, Exxon začal šetřit a financování vývoje ukončil.

Výzkum pak převzal John Goodenough. Jako materiálový vědec měl pocit, že jeho předchůdce plně nevyužil potenciál své baterie. Jeho znalosti mu napovídaly, že kdyby se podařilo nahradit sulfid nějakým vhodným oxidem, mohlo by se výrazně zvýšit napětí baterie. Jeho tým se nakonec setkal s velkým úspěchem. Zjistili, že při využití katody z oxidu lithia a kobaltu (tzv. oxid kobaltolithný LiCoO2) stoupne napětí baterií na dvojnásobek původní hodnoty, zhruba na 4 V. LiCoO2 je od té doby jeden z nejpoužívanějších materiálů v bateriích. A také to není jediný Goodenoughův důležitý objev.

Jeho skupina například jako první přišla s další podobou lithiových akumulátorů, dnes stále rozšířenějších lithium-železo-fosfátových akumulátorů (tedy s katodou z LiFePO4).

Při povídání o práci posledního z oceněných, Akira Jošiny (angl. transkripcí Akira Yoshino), se dostávám už do 80. let. V Japonsku výrobci elektroniky hledali nové typy „pohonu“ pro spotřební elektroniku, kterou vyváželi do celého světa. Jošino pracoval s baterií vylepšenou podle receptu obou spolunositelů letošní ceny za chemii, ale pokoušel se ji učinit ještě praktičtější a bezpečnější.

Chtěl se například zbavit kovového lithia. Katodu vyrobil z Goodenoughem objeveného oxidu lithia a kobaltu a zkoušel k ní anody z různých uhlíkatých materiálů, které by sloužily jako „klec“ na lithiové ionty. Předchozí výzkumy ukázaly, že to by mohla být slibná cesta, jak zcela nahradit elektrody z klasického kovového lithia, které se ukázaly tak nebezpečné například pro Whittinghamovu laboratoř.

Jošino experimentoval s různými materiály, průlomu ovšem dosáhl, když sáhl po tzv. ropném koksu. To je velmi křehký materiál, který vzniká za vysokých teplot z těžších složek ropy. Při vhodném zacházení a úpravách vznikne materiál složený téměř výhradně z čistého uhlíku s malým podílem dalších příměsí (obsah uhlíku u „vyčištěného“ ropného koksu je až 99,5 %). Jošino tak dokázal z baterie zcela odstranit čisté lithium a učinit ji výrazně méně hořlavou.

Lithiové baterie tak byly po desetiletích teoretických úvah a pokusů připraveny ke každodennímu využití. Uvedení do praxe se dočkaly v roce 1991 a od té doby jejich význam jen a jen roste – a cena klesá.

Skladování elektřiny z léta do zimy je dnes sice možné, ale velmi neprakticky drahé. V příští dekádě to chce změnit velmi ambiciózní plán amerického ministerstva energetiky.

Vysoké ceny elektřiny v letošní zimní sezóně všem připomněly, že v případě této klíčové suroviny je velmi důležité mít vyrovnanou spotřebu a výrobu. Sebevětší kapacita je k ničemu, pokud nemůže vyrábět kvůli nepříznivému počasí (například proto, že málo fouká) nebo nedostatku či přílišné drahotě používaného paliva.

Řešení mohou být různá, od stavby stabilních zdrojů po zvyšování kapacit pro skladování, tedy akumulaci, elektřiny. Ceny akumulace, tedy chemických baterií, stále klesají, a pro některá využití mohou být už dnes i na evropských trzích najít i finančně zajímavé uplatnění.

Vždy jde ale o skladování krátkodobé – a například tedy současné problémy chemické (tedy hlavně lithium-iontové) baterie vyřešit nepomohou. Levný způsob, jak skladovat elektřinu po dobu týdnů, či dokonce měsíců dnes v podstatě není. 

Dnes pracují na různých nápadech na takzvané „dlouhodobé skladování energie“ stovky společností po celém světě. Žádné řešení ovšem alespoň zatím není tak levné, aby bylo prakticky použitelné.

Po změně touží kdekdo. V řadě případů jde o jednotlivce či subjekty, jejichž prohlášeními nemá smysl ztrácet čas. “Skladování elektřiny” je dnes módní pojem a nepřesností, záměrně či kvůli neznalosti zavádějících tiskových zpráv a prohlášení je všude dost. Ale protože případný úspěch by mohl výrazně změnit největší průmyslové odvětví současnosti, tedy energetiku, velké “hráče” má smysl sledovat. 

Ten největší hráč

Proto je zajímavá iniciativa amerického ministerstva energetiky. Ta letos oznámila spuštění programu, který chce do roku 2030 snížit náklady na dlouhodobé skladování energie o 90 % pod cenu dnešních lithium-iontových baterií. Ministerstvo pověří odborníky ve svých národních laboratořích, aby se zaměřili na zdokonalování těchto technologií. 

Zároveň bude usilovat o financování prvních demonstračních projektů ze strany Kongresu – v USA totiž státní rozpočet je pevně v rukou zákonodárců, nikoliv administrativy. Normálně by to byl důvod k pochybnostem, v posledních letech ovšem Kongres je k požadavkům na navyšování rozpočtu na výzkum a vývoj velmi vstřícný. 

I Republikáni odmítli výrazné krácení těchto kapitol, které navrhovala administrativa Donalda Trumpa. Nelze vyloučit, že v tomto případě se možná nějaký odpor objeví, protože iniciativa je součástí programu Energy Earthshots, jejímž cílem je urychlit zavádění nově vznikajících technologií v boji proti změně klimatu. 

Není hotovo

Spuštění programu je v podstatě uznáním toho, že Spojené státy ještě nemají k dispozici technologie, které potřebují ke splnění Bidenova cíle: dosažení vyrovnané bilance emisí skleníkových do roku 2050.

Je to vidět i na výzkumných programech. Ministryně energetiky Jennifer Granholmová letos mimo jiné oznámila cíl snížit o 80 % náklady na čistá vodíková paliva, která by mohla pomoci omezit emise z továren, nákladních automobilů nebo elektrické sítě. Oba programy jsou vytvořeny podle vzoru Obamovy iniciativy Sunshot, která se zasloužila o snížení nákladů na solární energii v průběhu roku 2010.

Bidenova administrativa počítá, že se stále levnější solární a větrnou energií, aby splnil svůj cíl, že Spojené státy budou do roku 2035 získávat 100 % elektřiny z elektráren, které nevypouštějí oxid uhličitý. Bílý dům se v současné době snaží přesvědčit Kongres, aby přijal normu pro čistou elektřinu, která by po energetických společnostech v celé zemi vyžadovala splnění tohoto cíle.

Odvětví elektřiny je zodpovědné za čtvrtinu emisí skleníkových plynů ve Spojených státech. Zhruba 60 % elektřiny se stále vyrábí spalováním fosilních paliv, především zemního plynu a uhlí (USA tedy mají o něco podíl nižší vyrobené elektřiny z jaderných zdrojů než Česko). Bidenova administrativa považuje omezení emisí z elektřiny za ústřední bod svých klimatických plánů, protože se také snaží přesvědčit Američany, aby si kupovali více elektromobilů a tepelných čerpadel, která se budou připojovat do sítě.

Podle odborníků však vyčištění energetického sektoru bude vyžadovat více než jen nové zákony. Představuje také velké technologické výzvy s nejistým výsledkem. 

Na co vsadit

Několik modelů a studií z posledních let dospělo k závěru, že energetické společnosti by se mohly pravděpodobně dostat na 80 % čisté elektřiny pomocí dnešních technologií. Není to samozřejmě zadarmo: zapotřebí by bylo především instalovat většího počtu větrných turbín a solárních panelů, ale jinak by se dalo spoléhat na stávající vodní elektrárny a jaderné reaktory.

Ovšem úplně odstranění posledních 20 % emisí je i podle optimistů velký problém. Nespolehlivé obnovitelné zdroje vyžadují záložní plynové nebo uhelné elektrárny. V USA a jiných zemích (v Česku prakticky ne) se stále častěji budují lithium-iontové baterie řádově o kapacitách až stovek megawatthodin. V praxi ovšem slouží k akumulaci po dobu v průměru čtyř až šesti hodin. Přitom některých oblastech země může například bezvětří trvat několik dní nebo týdnů.

Existují řešení, ale každé má své větší či velmi velké nevýhody – je tedy těžké na jedno z nich vsadit všechny karty. 

Jednou možností je stavba lepších a lépe provázaných rozvodných sítí. A to podle teorie “někde vždycky fouká”. Ale stavba nových liniových staveb, včetně vedení, je v rozvinutých zemích pomalá a naráží velmi často na pevný odpor místních obyvatel. Alternativou je i vývoj a stavba nových typů bezuhlíkových elektráren: jaderných reaktorů, geotermálních elektráren nebo fosilních zdrojů, které mohou zachycovat a ukládat emise pod zem. 

Další potenciálně užitečnou možností je dlouhodobé skladování. Desítky společností experimentují s různými zařízeními, která by mohla uchovávat elektřinu po delší dobu.

Různé přístupy

Možnosti jsou různé, jak jsme ovšem uváděli na začátku, zatím všechny příliš drahé. Podle zprávy amerického ministerstva energetiky je potenciálně slibnou technologie například využívání stlačeného vzduchu.

Koncept je to jednoduchý. Levná elektrická energie se má využívat pro pohon kompresoru. Nasátý atmosférický vzduch je stlačen a uložen pod tlakem (5–7,5 MPa) v podzemní jeskyni. Když poptávka převýší nabídku energie, vzduch se z jeskyně vypouští a přivádí se na turbínu, která vyrábí elektrickou energii.

V praxi ovšem fyzikální zákony princip komplikují. Hlavní komplikací je vznikající odpadní teplo, které vzniká při stlačování každého plynu a které je z hlediska skladování elektřiny jen ztracenou energií. Během stlačování se kvůli tomu vzduch ochlazuje, aby nedošlo buď k přehřátí „nádrže“, nebo stěn případného podzemního zásobníku.

Po vypuštění ze zásobníku se při expanzi naopak zchladí natolik, že se před vypuštěním do turbíny raději ohřívá spalováním fosilních paliv. Ohřev má několik důvodů: zvyšuje výkon turbíny a také brání zařízení před poškozením. Stlačený vzduchu se totiž při expanzi stlačený vzduch ochlazuje na tak nízké teploty, že to materiálům (tedy především kovům) příliš nesvědčí.

Další možností je využití vodíku. Proces je ovšem neúčinný, drahý. Určitě ho lze zlepšit, otázkou je, jak rychle to půjde. Ale třeba i některé české firmy na tento nápad hodně sází.

Vzdálený cíl

Výzkumníci v oblasti ovšem tvrdí, že k praktické aplikaci je velmi daleko: a to hlavně z hlediska ceny. Je to zcela pochopitelné: jde o zařízení, která by se zapínala – a tedy vydělávala – doslova jen několikrát ročně, a tak cena musí být extrémně nízká. 

Nedávný odborný článek v časopise Nature Energy odhaduje, že náklady na kapacitu by musely klesnout pod 50 dolarů za kilowatthodinu, tedy na méně než třetinu nákladů na dnešní lithium-iontové baterie pro rozvodné sítě, než začnou distributoři ve větší míře dlouhodobé skladování využívat. 

To přitom mluvíme pouze o využívání v těch finančně nejvýhodnějších případech a na nejpříhodnějších trzích: pokud by mělo toto řešení být opravdu na trhu dominantním, bude možná muset cena klesnout na 1 až 10 dolarů za kilowatthodinu.

Už je asi jasné, proč z finančního hlediska je i přes vysoké ceny povolenek výrazně jednodušší a levnější spalovat zemní plyn.

Evropská Unie, USA, Čína a další země chtějí zavázat výrobce automobilů, aby se zavázali k minimální životnosti baterií instalovaných do svých elektrických a hybridních automobilů. Předpis má zaručit kvalitu článků. Není však příliš ambiciózní.

Země se na tom v zásadě dohodly na Světovém fóru pro harmonizaci předpisů pro vozidla, které se konalo v Ženevě v rámci Evropské hospodářské komise OSN (EHK OSN). „V zásadě dohodnuto“ následně znamená, že zatím neexistuje žádné závazné rozhodnutí. Podle plánu se má o návrhu závazného nařízení hlasovat v březnu 2022.

Následně budou muset země, které s návrhem souhlasí, požadavek EHK OSN přenést do vnitrostátního práva. Podle sdělení EHK OSN by tak nařízení mohlo platit od roku 2023.

Pokud bude současný návrh přijat na jaře příštího roku, budou platit následující požadavky na odolnost baterií: Po pěti letech nebo ujetí 100 tisíc kilometrů smí baterie ztratit méně než 20 % své původní kapacity. Po osmi letech nebo 160 000 kilometrech nesmí ztráta přesáhnout 30 procent.

Podle EHK OSN je cílem zabránit používání „nekvalitních baterií“. To má zásadní význam „pro posílení důvěry spotřebitelů a zlepšení ekologických parametrů elektromobilů nad rámec jejich nízkých emisí“.

Pro samotné automobilky je nařízení ve své současné podobě pravděpodobně nepředstavuje žádnou velkou výzvu. V záručních podmínkách řady výrobců lze dnes najít záruku 70 procent kapacity po osmi letech nebo 150 tisíc najetých kilometrech lze již nyní nalézt velmi často. V některých případech výrobci zaručují tyto výkony i při vyšším počtu najetých kilometrů. Pokud by byl tedy přijatý návrh v současné podobě, v podstatě by se přenesl do práva faktický status quo.

Kromě EU, USA a Číny podporují iniciativu také Japonsko, Kanada, Jižní Korea a Velká Británie. Takové nařízení by pak platilo jednotně na dosud největších trzích s elektrickými vozidly.

V jednom ohledu by však nařízení šlo ještě dál: spotřebitelé by mohli získat jakési právo na informace. „Podle navrhovaného nařízení budou přesné informace o stavu a zbývající kapacitě baterie volně dostupné majiteli vozidla,“ říká André Rijnders, předseda pracovní skupiny pro znečištění a energii (GRPE). „To poskytne cenné informace pro transakce s ojetými / použitými elektromobily a jiné změny majitele vozidla.“

Skupina ČEZ chce do konce roku rozhodnout, s kým postaví továrnu na baterie v areálu bývalé hnědouhelné elektrárny Prunéřov I na Chomutovsku. Novinářům to řekl 30. září ředitel společnosti Daniel Beneš. První fáze projektu by podle něj mohla být hotova kolem roku 2025.

Plánovaná česká továrna na baterie do elektromobilů, takzvaná gigafactory, by mohla podle informací ČEZ vyrobit baterie o kapacitě více než 30 gigawatthodin, což vystačí pro 400 až 800 tisíc osobních automobilů ročně.

„Je to tak, že jednání se Škodou Auto z koncernu Volkswagen vedeme skoro celý rok, ale je ještě předčasné komentovat finální dohodu, protože tu jsme ještě neudělali,“ uvedl Beneš s tím, že jednání pokračují vedle toho s dalšími partnery převážně z Asie. Premiér Andrej Babiš (ANO) uvedl, že 11. října přijede předseda představenstva Volkswagenu.

Memorandum o podpoře plánovaného projektu továrny na baterie v Česku podepsali na konci července vicepremiér Karel Havlíček (za ANO) a ředitel ČEZ. Podle dřívějších informací má investice v první fázi činit minimálně 52 miliard korun a v souvislosti s ní se předpokládá vznik minimálně 2300 nových pracovních míst. Favoritem pro stavbu je právě areál bývalé hnědouhelné elektrárny Prunéřov 1, kterou ČEZ loni odstavil.

Bude světová?

Znamenalo by to tedy nejspíše, že ČEZ plánuje roční kapacity zvažované “obrtovárny” někde v rozmezí 20-50 gigawatthodin roční výroby. Je to samozřejmě pouze hrubý odhad, který je založený na průměrné kapacity baterie elektromobilu kolem 50 kWh (v roce 2021 byla 43 kWh).

To je plně srovnatelné s Gigafactory 1, známé také jako Giga Nevada, tedy první závodem tohoto typu, který postavily v Nevadě společnosti Tesla a Panasonic (podíl Panasonicu byl významný a jeho technologie byly pro rozjezd klíčové).

Na pohled není skromný cíl. Nevadská Gigafactory 1 byla v roce 2020 největším výrobnou baterií ve světě a vyrobila baterie s kapacitou cca 37 GWh. ČEZ tedy v podstatě říká, že chce zvládnout podobý úkol jako Tesla. Je ovšem nutné vzít v úvahu, že know-how na stavbu podobných podniků rychle přibývá a postavit desátou či dvacátou továrnu takového typu už nebude tak obtížný úkol jako postavit první.

odle Venkata Srinivasana, ředitele Argonne Collaborative Center for Energy Storage Science, by jen Spojené státy k pokrytí předpokládané poptávky mohly během 15 let potřebovat 20 až 40 gigatováren s celkovou terawattovou kapacitou nových baterií. “Právě teď na to Spojené státy nemají dostatek materiálů, takže klíčem k rozjezdu výroby bude náhrada části dnes používaných materiálů a recyklace,” řekl Srinivasan pro IEEE Spectrum.

General Motors, který se snaží bojovat s dnes dominantními asijskými výrobci, staví v Ohiu a Tennessee továrny s celkovou kapacitou 70 gigawattů. To je dvojnásobek kapacity nevadské gigatovárny společnosti Tesla.

Ford plánuje ve spolupráci s jihokorejskou společností SK Innovation zvýšit do roku 2030 kapacitu v Severní Americe na 140 GW, a celosvětově na 240 GW. Ford odhaduje, že k tomu bude zapotřebí šest továren ve Spojených státech a deset ve zbytku světa.

Ale i tak samozřejmě půjde o projekt, na kterém se dá leccos zkazit. Konečné rozhodnutí by mělo padnout v roce 2023, pak by mohla následovat stavba závodu s tím, že zahájení těžby by bylo v roce 2025. V současnosti prý běží práce na povolovacích řízeních včetně běžícího procesu EIA (posudek vlivu na životní prostředí).

České lithium

Většina expertů, které nedávno oslovila ČTK, se shodla, že plánovaný vznik továrny na baterie pro elektromobily v Česku je pro tuzemský automobilový průmysl kvůli vývoji na trhu a směřování Evropy k nízkoemisním zdrojům téměř nutností.

Šéf ČEZ Beneš nedávno uvedl, že továrna na baterie pro elektroautomobily by při optimistickém scénáři mohla v ČR stát mezi roky 2026 až 2028. Dodal, že výše podpory státu pro plánovanou stavbu gigafactory v tuto chvíli není dojednaná, tvořit ji podle něj má přímá podpora i daňové úlevy.

Vedoucí odboru surovinového informačního systému České geologické služby Jaromír Starý uvedl, že v Česku je v současnosti evidováno 571,5 milionu tun rudy s 1,14 milionu tun lithia.

Uvedl, že v ČR jsou proti dřívějším třem už jen zhruba dvě procenta světových zdrojů lithia. „Průzkumy a přírůstky zdrojů ve světě pokračují,“ vysvětlil. V Česku je malé množství na ložisku ve Slavkovském lese a naprostá většina na Cínovci. „Předmětem dobývání budou nejbohatší a nejpřístupnější části cínoveckého ložiska,“ dodal.

Pestré složení cínovecké rudy znamená, že zpracování by probíhalo v několika krocích. Separace wolframu a cínu se dá nejspíše provádět odstředivou silou, protože nerosty, ve kterých tyto dva prvky jsou na Cínovci obsaženy, jsou poměrně těžké. V podstatě jde o průmyslovou obdobu rýžování zlata, při kterém při rotaci postupně vypadávají z pánve lehčí složky, až na místě zůstanou nejtěžší zlatá zrna.

Cinvaldit, tedy nerost obsahující lithium, by se měl údajně z rozdrcené rudy získávat magnety. Společnost European Metal Holding tvrdí, že by mělo jít o proces velmi efektivní, s výnosem 92 procent, což je z hlediska těžařů výrazné plus.

Světovému obchodu s bateriemi dominuje vybraná hrstka. Jen šest společností dodalo v roce 2020 87 procent všech bateriových článků do elektromobilů. Firmy BYD, CATL, LG Energy Solution, Panasonic, Samsung SDI a SK Innovation.

Zdaleka největším odběratelem byla společnost Tesla. Ta ve stejném časovém období do automobilů namontovala baterie s celkovou kapacitou 22,5 gigawatthodiny. To bylo téměř stejně jako součet produkce pěti nejbližších konkurentů dohromady: BYD, Hyundai, Mercedes, Renault a Volkswagen.

PořadíFirma
Odběratelé
Výroba (v GWh)Tržní podíl (v %)
Růst mezi lety 2016 a 2020 (v %)
1Contemporary Amperex Technology Co. (CATL)BMW, Dongfeng Motor Corp. Honda, SAIC Motor Corp. Stellantis, Tesla, Volkswagen Group, Volvo Car Group21,5
26
3400

2LG Energy SolutionGeneral Motors, Groupe Renault, Stellantis, Tesla, Volvo, VW Group21,4 26 1193
3PanasonicTesla, Toyota14,1 17 214
4Samsung SDIBMW, Ford, Stellantis, VW Group5,5 7399
5BYD Co.BYD, Ford5,57113
6SK InnovationDaimler, Ford, Hyundai, Kia3,44226
7China Aviation Lithium Battery (CALB)GAC Motor, Zhejiang Geely Holding Group Co.2,73321
8Gotion High-TechChery Automobile Co., SAIC, VW Group1,4223
9Automotive Energy Supply Corp. (AESC)Groupe Renault, Nissan1,42 46
10Ruipu Energy Co. (REPT)Dongfeng, Yudo Auto0,61100
Další4,25122
Celkem81,6100355
Největší dodavatelé baterií pro elektromobily od ledna do května 2021. (Zdroje: IEEE Spectrum, Adamas Inteligence, Businesskora, Electrive, BMW, Ford, Honda, Volvo)

Ve stejné době se zvedla „poptávková tsunami“. Ta vyvolala nebývalý tlak na dodavatelské řetězce materiálů pro baterie a motory a vyvolalo prudký nárůst cen lithia, niklu, kobaltu, neodymu, praseodymu, dysprosia a terbia.

Jak uspokojit poptávku

Jak svět uspokojí svět poptávku po bateriích? Podle Venkata Srinivasana, ředitele Argonne Collaborative Center for Energy Storage Science, by jen Spojené státy k pokrytí předpokládané poptávky mohly během 15 let potřebovat 20 až 40 gigatováren s celkovou terawattovou kapacitou nových baterií. „Právě teď na to Spojené státy nemají dostatek materiálů, takže klíčem k rozjezdu výroby bude náhrada části dnes používaných materiálů a recyklace,“ řekl Srinivasan pro IEEE Spectrum.

General Motors, který se snaží bojovat s dnes dominantními asijskými výrobci, staví v Ohiu a Tennessee továrny s celkovou kapacitou 70 gigawattů. To je dvojnásobek kapacity nevadské gigatovárny společnosti Tesla.

Ford plánuje ve spolupráci s jihokorejskou společností SK Innovation zvýšit do roku 2030 kapacitu v Severní Americe na 140 GW, a celosvětově na 240 GW. Ford odhaduje, že k tomu bude zapotřebí šest továren ve Spojených státech a deset ve zbytku světa.

Tempo růstu je ale již dnes ohromující. Společností CATL (Contemporary Amperex Technology) a LG Energy Solution v posledních čtyřech letech vyrostly řádově o tisíce procent.

Stará technika, nové triky

Rychlý nárůst poptávky může vytvořit něco, co banka Goldman Sachs nazývá „komoditním supercyklem“. Ten může dlouhodobě zatížit dodavatelské řetězce a ceny lithia a dalších materiálů (například vzácných kovů). O přijetí elektrických vozidel také rozhodnou do značné míry vlády a spotřebitelé. Růst a vládní signály v souvislosti s klimatickou krizí však naznačují, že přichází období boomu v oblasti baterií.

Zvláště patrné je v to ve výrobě výkonných článků. Všichni výrobci automobilů se rádi chlubí nejlepším dojezdem nebo výkonem ve své třídě. Navíc mohou zákazníky oslnit rychlým nárůstem těchto parametrů. Energetická hustota bateriových článků se za posledních deset let téměř ztrojnásobila a přední chemické články nyní dosahují mohou obsahovat 300 watthodin na kilogram.

Ale zároveň musí výrobci myslet na to, co do svých baterií dávají. Některé materiály budou nedostatkovější, a tedy dražší než jiné. Příkladem může být kobalt. Ten se z velké části těží v podmínkách, které by do 21. století neměly patřit. A firmy pak samozřejmě slyší i na to, že vzhledem k rozsahu nabídky může jeho cena rychle stoupat.

Rizikový kobalt tak v bateriích nahrazují jiné prvky, především nikl. Závod o zvýšení obsahu tohoto kovu v bateriích vede dnes společnost LG Energy Solution. Výkonné NCMA články (nikl, kobalt, hořčík, hliník) této jihokorejské společnosti budou brzy pohánět Tesly vyráběné v Číně a řadu elektromobilů General Motors. Mají také nejvyšší zastoupení niklu v odvětví: elektrolyt ho obsahuje 88 %.

Přitom kapacita je vyšší než u starších modelů s vyšším obsahem kobaltu. Výrobci tak mohou do daného prostoru vtěsnat více energie a dojezdové vzdálenosti, aniž by museli zásadně měnit konstrukci baterií.

O krůček níže jsou články NCM811 od hráčů, jako je Contemporary Amperex Technology Co. (CATL), LG a SK Innovation, s poměrem niklu, kobaltu a manganu zhruba 8:1:1. Castilloux říká, že jedním z triků je přidat nikl a omezit kobalt a zároveň zajistit tepelnou stabilitu, protože požáry škodí obchodu.

Adamas Intelligence uvádí, že 60 % všech baterií osobních elektromobilů nasazených v roce 2020 bude obsahovat články s vysokým obsahem niklu, jako jsou články NCA nebo NCM řady 6 až 8.

Zkušebnou nové a zatím ve velkém nenasazované technologie NCMA je dnes Čína. Ale výrobci s nimi nechtějí v Číně zůstat, chtějí prorazit na západní trhy.

Ale na technologii je ještě co zlepšovat. Například špičkové články společnosti CATL se v současnosti vyrábí velmi neefektivně. Společnost neustále rychle navyšuje výrobu a procesy ladí teprve postupně. Podle Castillouxe v současné době na každý vyrobený článek CATL s vysokým obsahem niklu připadá zhruba jeden vadný článek, který jde na recyklaci (což je také špatné pro obchod).

Baterie pro masy?

Určitě to nebude jen neustálý pochod směrem k lepším a výkonnějším bateriím. Na výsluní se například vrací lithium-železo-fosfátové (LFP) baterie, které byly kdysi považovány za zastaralé. A to zejména v Číně, kde společnost Contemporary Amperex Technology Co. (CATL), která je nyní největší světovou bateriovou společností, dodává LFP pro standardní model 3 společnosti Tesla.

Elon Musk nedávno vyvoval značnou pozornost, když naznačil, že Tesla dlouhodobě přechází na levnější, bezkobaltové baterie LFP. „To je vlastně dobře, protože železa je na světě dost,“ řekl v červenci 2021 před novináři.

LFP stále tvoří méně než 10 % všech li-ion článků. Ovšem podle analytiků se množství do výrobků článků v druhé polovině roku 2020 meziročně zvýšilo o 600 %. LFP má menší energetickou hustotu než na nikl bohaté litihum-iontové články, ale jejich katodové materiály jsou levnější.

K řešení nevýhod v oblasti účinnosti přispívá konstrukce „cell-to-pack“, která upouští od použití nesčetných válcových článků uspořádaných do modulů. Větší hranolové články se integrují přímo do balení, což šetří místo, snižuje počet součástek a zjednodušuje chlazení a připojení. „Balení je v podstatě jeden velký modul,“ říká Castilloux.

Nejprodávanější čínský elektromobil, Wuling Mini za 4 500 dolarů, používá balíčky LFP od výrobců, jako je Hefei. Srinivasan říká, že LFP se pro některé aplikace jeví jako ideální. „Levnější auto s LFP, které vydrží dlouho a ujede kolem 250 kilometrů, není špatné,“ říká.

Objevuje se nový, v podstatě celosvětový trend: výrobci automobilů – včetně General Motors, Tesly a Volkswagenu – používají baterie s vyšším obsahem niklu (a případně dalších dražších surovin) pro vozy s delším dojezdem nebo vozy sportovní. Baterie LFP se pak používají pro levnější, základní modely.

Během nedávného horovu Elona Muska s investory se objevila věta, která nejednoho fanouška i akcionáře mohla vyděsil: Musk řekl, že výroba nového elektrického článku pro vozy firmy narazila na „úzké hrdlo“. Firma sice pokročila v případě výroby, ale do jejího rozjezdu ještě zbývá spoustu práce.

Výraz „úzké hrdlo“ znalcům Tesly totiž připomíná téměř smrtelné období firmy na přelomu let 2017 a 2018. Kalifonrská společnost tehdy měla veliké problémy s přípravou výroby Modelu 3. Musk musel vyškrabávat poslední finanční rezervy a přespával v kanceláři.

Model 3 samozřejmě uspěl, a firma se díky němu nadechla k dalšímu ohromnému růstu. Může se zdát, že tentokrát jsou sázky nižší – jde „jen“ o novou baterii – ale tak to není.

Význam nového článku s označním 4680 pro Teslu je těžké přecenit. Měl by totiž dodat „šťávu“ Muskovům sny o milionůch elektromobilů ročně. Dojezd vozů by se měl zvýšit o více než 50 %, 16 % z toho díky vyšší energetické hustotě nového článku, a náklady na baterie by měly klesnout na polovinu. Díky tomu by se v prodeji měla v příštích letech objevit Tesla za 25 tisíc dolarů, tedy zhruba půl milionu korun. (V Česku by samozřemě byla dražší minimálně o HDP.)

O hodně lepší váleček

Články v bateriových souborech jejích modelů dodnes velmi nápadně připomínají tužkové baterie. První generace článků Tesly se tak nazývala 18650, protože měla rozměry 18 na 65 milimetrů (tužkové baterie AA mají 14,9 na 50 mm, tyto první baterie Tesly tedy nebyly o mnoho větší). Pak přišly větší 2170 (21 na 70 mm), které měly tedy zhruba o polovinu větší objem. V září 2020 pak Tesla oznámila přechod na větší články 4680, které už mají zhruba pětkrát vyšší kapacitu než původní články 18650.

K tomuto údaji jedna poznámka, která dobře vystihuje Muskův postoj k reklamě a marketingu: během zmíněné prezentace v září 2020, během tzv. Battery Day, se opakovaně mluvilo o několikanásobně vyšší kapacitě. Nikdo ovšem zároveň jedním dechem nedodal, že zvýšení kapacity je dáno téměř úplně prostě zvýšením objemu baterie. Ne že by Tesla vysloveně lhala. Neudělala ale nic pro to, aby nezkušené posluchač nedošel ke špatnému závěru.

Vysloveně nepřesné pak bylo tvrzení, že nové baterie v automobilech Tesla jsou unikátní svou „strukturální konstrukcí“. To jednoduše znamená, že články jsou v baterii (paralelně) zapojeny co nejefektivněji, tedy aby se uspořilo místo a hmotnost. Ale stejný princip už použvají i další výrobci, například v mikroelektromobilu Wuling Mini.

Skutečných novinek je ale i přes tyto výhrady dost. Jedna spočívá ve způsobu odvodu a přívodu elektřiny ze samotného aktivního materiálu na póly baterie. To mají na starost v článcích malé vodivé prvky – anglicky nazývané „tabs“ – obvykle vyrobené z niklu, hliníku, případně mědi. „Tabs“ jsou jedním ze slabších míst baterie. Když se baterie rychle nabíjí či vybíjí, právě v těchto kovových prvcích vzniká velké množství tepla – což je pro lithiovou baterii samozřejmě velký problém.

Tesla si v roce 2020 podala patent na baterie, které se bez těchto vodivých prvků mají zcela obejít (baterie s „tabless“ elektrodami). Změna by měla údajně výrazně zjednodušit výrobu. Umísťování a připevňování „tabů“ totiž podle Muska i Baglina výrazným způsobem zdržovalo výrobu článků. Proces není okamžitý, a tak se kvůli němu musí článek na své cestě linkou zastavit. Bez těchto prvků se údajně může linka pohybovat v podstatě kontinuálně. Můžeme si ji údajně představit jako například plnicí linku na nápoje.

Odstranění kovových prvků by také mělo údajně velmi výrazně snížit množství odpadního tepla, které vzniká při rychlém nabíjení baterií. Což v důsledku může vést k nabíjení většími proudy a tedy zkrácení zastávek na dobíjecích stanicích.

Samozřejmě to je spíše hypotetická úspora. Rychlost dobíjení do značné míry záleží na parametrech samotných nabíječek, které provozovatel z pochopitelných důvodů nemůže měnit každý rok. Doma také tak velkými proudy těžko bude někdo dobíjet. „Tabless“ baterie by však mohly mít například zvýšenou životnost. Vyšší teploty bateriím rozhodně neprospívají.

Model článku 4680 společnosti Tesla (kredit Reddit user u/Bimmer3389)
Model článku 4680 společnosti Tesla (kredit Reddit user u/Bimmer3389)

Bez kanálů

Novým typem baterie by měla do jisté míry i dohánět konkurenci. Ještě v Modelu 3 totiž používá systém chlazení, který není úplně efektivní. Mezi řadami článků má kanálky na odvod odpadního tepla, které vlastně nejsou zapotřebí. Většina tepla totiž vzniká na obou koncích článků. Dělat mezi nimi místo na kanály je podle jiných výrobců znalců oboru v podstatě zbytečně.

Samozřejmě, znalcům nemusíte věřit. V případě Tesly se už mnohokrát mýlili. V tomto případě ale v podstatě uznává svou chybu i Tesla sama. Nové „balení“ baterie kanálky mezi články mít nebude, místo toho budou články umístěny na kapalinou chlazené desce. Velmi podobně jako to je u elektromobilů GM, Fordu, Volkswagenu, Porsche a tak dále a tak podobně.

Místo by se mělo uspořit i jinak. Konstruktér a konzultant Sandy Munro, který proslul svým YouTube kanálem, kde rozebíra elektromobily, nedávno odhadl, že Tesla dokáže zvýšit výkon bateriových celků o více než 50 procent při zachování stejných rozměrů. Do rozměrů baterie pro Teslu 3, která má kapacitu 72 kWh, by se podle něj mohla vejít nová baterie s kapacitou cca 130 kWh.

Kromě zmíněné úspory vzniklé změnou chladícího systému by k tomu měly významně přispět i další změny v konstrukci. Více dílů by mělo být slepeváno, a také svařované části konstrukce se dají udělat efektivněji. Celkem by tam nové bateriové celky podle něj mohly obsahovat o 30 až 40 procent méně oceli.

Trochu to osolíme…

Nový typ 4680 bude mít pozměněné například i elektrody. Jedna změna bude na tradičně uhlíkové anodě. Uhlík se pro anody používá, protože dobře vede proud, má ovšem poměrně malou kapacitu. Na uložení jednoho lithiového iontu je zapotřebí „klece“ tvořené šesti atomy uhlíku. Naproti tomu například jediný atom křemíku dokáže navázat čtyři atomy lithia.

Tato výhoda je dlouho známá a s křemíkem se hojně experimentovalo, bohužel má i nepříjemné vlastnosti. Významnou je, že po pohlcení elektronů „bobtná“ – velmi výrazně se změní jeho objem, a to několikanásobně (řekněme pro jednoduchost zhruba na trojnásobek původního). Pokud postavíte baterie z křemíku s pomocí běžných postupů, stačí jen několik nabití, anoda se roztrhá na malé kousky a celý článek je k ničemu.

Přesto se v anodách křemík už používá, a nejen u Tesly. Je to totiž jeden z nejnadějnějších způsobů, jak kapacitu baterií zvýšit. Ovšem v současných anodách je křemíku málo, řádově jednotky procent z celkového objemu. Příměs je tak malá, že nárůst objemu není velký problém a zvýšení kapacity o několik procent za něj stojí.

Na Battery Day zaznělo, že množství křemíku by se mělo zvýšit několikanásobně, aby se dojezd při zachování objemu baterie zvýšil cca o 20 procent. Problém s „bobtnáním“ chce Tesla vyřešit tak, že baterie nebude znovu čistě křemíková – bude obsahovat i elastické materiály, které se mohou zmenšit tak, aby se kompenzovalo zvětšování křemíku v anodě. Jak vidno, v tomto ohledu je ještě co zlepšovat.

Změny by se měly dotknout i druhé elektrody, tedy katody (poznámka bokem: v dobíjecích bateriích se samozřejmě role elektrod mění podle toho, zda se nabíjí, či vybíjí, ale pro zjednodušení se jako anoda obvykle označuje elektroda, na které během vybíjení dochází k oxidaci). V první řadě Tesla potvrdila, že se pokusí zbavit kobaltu v bateriích.

Jak již asi víte, kobalt se používá v katodě baterií, obvykle v kombinaci s niklem a manganem v podobě materiálu známého jako NMC. Kobalt je z těchto materiálu nejdražší, navíc je dnes jeho produkce vázána na problematickou těžbu v Kongu.

I proto se většina výrobců snaží kobaltu zcela zbavit. V minulosti byly v NMC ve stejném poměru 1 : 1 : 1 nikl, mangan a kobalt. V nových bateriích ovšem tvoří velkou část materiálu pouze nikl (někdy téměř 90 procent) a kobaltu je cca 5 procent. Tesla tedy znovu není jediná, je v podstatě ilustrací obecného trendu, který by měl zjednodušit a zlevnit výrobu baterií obecně. Tesla možná bude, možná nebude první, důležité je, že vývoj pokračuje. V roce 2021 by mělo být vyrobeno cca 10 GWh těchto baterií, tak uvidíme, jaké informace od výrobce dostaneme – a jaké uniknou.

Článek Panasonic staršího typu 2170 určený pro elektromobily Tesla (kredit Tesla/Panasonic)

Za sucha to stále nejde

Součástí linky nebude podle všeho další technologie, od které si fanoušci hodně slibují. Tesla totiž zhruba v květnu 2019 dokončila koupi firmy Maxwell Technologies. Ta si dala mimo jiné za cíl radikálně zjednodušit jeden ze složitých kroků ve výrobě baterií a vyrábět elektrody „za sucha“.

Dnes se vstupní materiály pro obě elektrody nejprve musí rozpustit, pak lisovat a vysušit. Celý proces nejen výrobu zdržuje, ale také zdražuje, už kvůli nákladům na energie a nutné vybavení.

Maxwell Technologies přišly s demonstrací procesu výroby za sucha, který by se měl bez těchto kroků obejít. Po jeho dotažení do výroby by se obě elektrody měly velmi jednoduše lisovat za sucha a nízkých teplot do požadované podoby tenkého filmu.

Jak ovšem potvrdili Musk a Baglin, zatím jsou k dispozici pouze první prototypy technologie ve velmi malém, v podstatě laboratorním měřítku. Do výroby má tedy proces ještě opravdu daleko a nedá se předpokládat, že by Tesla tuto technologii dokázala dotáhnout do praxe během tří let, jak to slibuje u většiny ostatních „zlepšováků“, které na Battery Day prezentovala.

Ale možná se samozřejmě pleteme. V prezentacích Tesly bývá těžké odlišit šum od skutečného signálu.

Nejlepší ve výrobě

Všechna dílčí zlepšení mají jeden hlavní cíl: výrazně zjednodušit, zrychlit a tedy i zlevnit výrobu baterií ve velkém. Tesla, která sází na to, že investory naláká na velké cíle, tak především dala najevo, že hodlá ve výrobě baterií přejít na kvantitaivně novou úroveň.

Firma si dala za cíl vyrobit ročně baterie s celkovou kapacitou od 10 do 20 terawatthodin. Celková roční výrobní kapacita je dnes o dva řády nižší, pohybuje se zřejmě někde v pásmu nad 300 GWh ročně. Rekordní Gigafactory v Nevadě, která ještě není dostavěna, je koncipována na výrobu kolem 150 GWh za rok.

Jak zvýšit výrobu řádově stokrát? Tesla má dva recepty. Stejně jako řada jiných firem samozřejmě chystá stavbu dalších továren na baterie. Ale zároveň tvrdí, že „zlepšováky“ představené v rámci Battery Day mohou velmi výrazně zvýšit výrobu v již stojících továrnách. Kontinuální výroba jednodušších baterií, které pojmou více energie, může údajně zvýšit produkci z jedné linky zhruba sedminásobně.

Toto číslo je nutné brát s rezervou, protože máme k dispozici pouze nablýskanou prezentaci a „tvrdá data“ jsou předmětem obchodního tajemství. Podle odhadů agentury Bloomberg se ceny baterií (kompletních baterií, ne pouze článků) v roce 2020 pohybovaly v průměru někde kolem 140 dolarů za kilowatthodinu. Na Battery Day se hovořilo o tom, že zavedení představených novinek by mělo cenu snížit zhruba o něco více než 50 procent.

Pokud by tomu tak bylo, cena by se měla poměrně dostat dosti hluboko pod bedlivě sledovanou hranici 100 dolarů za kilowatthodinu. Zhruba na ní by se přitom elektrické vozy mohly v pořizovací ceně začít rovnat vozům se spalovacím motorem. Tedy zhruba na úrovni nového modelu Tesly, jehož existenci Musk v prezentaci potvrdil. 

A kdy by to mohlo být? Tesla je známá tím, že nedodržuje slíbené termíny. Koncem dubna Musk uvedl, že do výroby baterie zbývá 12 měsíců, ne-li 18 měsíců. V tom případě by bylo možné, že stávající dodavatelé baterií pro Teslu, tedy společnosti Panasonic, CATL, LG Energy Solution a SK Innovation, možná dodají baterii 4680 dříve než samotná Tesla. (Nový šéf Panasonicu potvrdil, že jeho společnost do výroby článků 4680 mohutně investuje, pokud se ukáží jako životaschopné).

Po měsících mlčení Tesla v srpnu konečně potvrdila, že odklad skutečně přijde. Kvůli nedostatku baterií bylo představení jejího Cybertrucku posunuto na rok 2022. Tento masivní pick-up je spolu s (rovněž odloženým) tahačem Semi jedním z horkých kandidátů na využití článků 4680. Vzhledem k rozměrům to nepochybně bude „žrout“ energie.

V nových typech elektromobilů se začíná stále více objevovat technologie obousměrné dodávky energie zvaná Vehicle-to-grid (V2G), Vehicle-to-home (V2H), Vehicle-to-building (V2B) a Vehicle-to-everything (V2X), která umožňuje využívat naakumulovanou energii pro jiné účely.

S takto vybavenými vozy si tak snadno dobijete své elektrokolo, můžete napájet přenosný chladicí box, v kempu zapojíte třeba osvětlení nebo elektrický vařič. Navíc můžete cestou pomoci trochou energie jinému elektromobilu s vybitou baterií, aby poté dojel k nejbližší dobíječce. A to není vše.

Ti, kdo mají doma svůj vlastní fotovoltaický systém, budou navíc moci ušetřit v době vysokého tarifu elektřiny energií z auta. A při výpadcích proudu jim baterie v autě po potřebnou dobu pomůže zajistit plnou nebo částečnou soběstačnost. V americkém Texasu si to letos vyzkoušeli v době silných mrazů a kolapsu sítě.

Auta jako powerbanky

Výhledově navíc takto uzpůsobené vozy pomohou vyrovnávat energetické špičky v rozvodné síti. Nejčastěji se mluví o technologii Vehicle-to-grid (V2G), která počítá s propojením s chytrou energetickou infrastrukturou. Majitelům takto uzpůsobených vozidel umožní naakumulovanou energii z fotovoltaických kolektorů na domě, popřípadě tu, kterou levně nabili za nízký tarif v noci, využít později, či ji prodávat do rozvodné sítě dráž v době špičky.

Tím pomohou vyrovnávat velmi rychle se měnící dodávky elektřiny z obnovitelných zdrojů, tedy z větrníků a solárních elektráren. Z elektromobilů se tak stanou v podstatě jakési powerbanky na čtyřech kolech, které budou součástí chytrých elektrických sítí. Energetický management tak s vysokou pravděpodobností zamíchá se zavedenými praktikami na trhu a pomůže ještě více rozšířit nabídku.

I na evropském trhu je už několik modelů, které mají příslušný hardware i software pro obousměrný tok energie. Velmi aktivní byli Japonci, které k rozvoji obousměrných dobíječek podnítila katastrofa ve Fukušimě v roce 2011, což vedlo k rozvoji technologie V2G u standardu CHAdeMO (Nissany Leaf a e-NV200, Mitsubishi Outlander PHEV).

Obousměrný tok energie ale umožňuje již i standard Combo CCS. Nejnověji u Hyundaie Ioniq 5 a Kie EV6. Další modely zatím dostávají z výroby příslušný hardware, přičemž software se bude nahrávat až následně, kdy bude zcela vyladěný. To je i případ Volkswagenu ID.3 či Škody Enyaq iV v provedení s největší 82kWh baterií. Kromě softwaru automobilky samozřejmě nabídnou i odpovídající domácí V2G wallboxy. Na této technologii pracují prakticky všechny automobilky i energetické firmy a v rámci řady pilotních projektů ji prověřují po celém světě.

Technologie V2G umožňuje rovněž napájet přenosný chladicí box a v případě potřeby napájet třeba osvětlení nebo elektrický vařič. (foto: Hyundai)
Technologie V2G umožňuje rovněž napájet přenosný chladicí box a v případě potřeby napájet třeba osvětlení nebo elektrický vařič. (foto: Hyundai)

Baterie pro elektrická vozidla jsou zdaleka nákladově nejefektivnější formou skladování energie, protože nevyžadují žádné další investice do hardwaru. Ve srovnání s jednosměrným inteligentním nabíjením lze u V2G efektivněji využívat kapacitu baterie. Ale je tu i jeden problém. Velmi drahé akumulátory mají omezený počet nabíjecích cyklů, proto může mít jejich zapojení do dodávek energetické soustavy negativní vliv na jejich životnost jejich baterií a integrovaných nabíječek v autech. 

Bude také hodně záležet, jestli automobilky ponechají většinou osmiletou záruku na baterii i v případě každodenního využívání V2G. Navíc je třeba počítat se značnými ztrátami. Studie ukazují, že při nabíjení auta a jeho opětovném vybíjení jsou ztráty 30 až 40 % energie, což není zrovna málo. Dalším problémem je fakt, že pro rozvodnou síť budou elektromobily trochu nepředvídatelný zdroj, neboť k síti nejsou připojeny nepřetržitě.

Temelín na kolech

Flotily elektrických aut budou výhledově plnit funkci jakýchsi malých elektráren. Do roku 2030 má být podle společnosti Virta, která se specializuje na výrobu V2G dobíječek, celosvětově v provozu 140 až 240 milionů elektrických aut, což při tom nižším odhadu znamená agregovanou úložnou kapacitou 7 TWh, což představuje pětiměsíční výrobu v jaderné elektrárně Temelín.

Samozřejmě ne všechny elektromobily by se do tohoto procesu zapojily, možná by to byly jen nižší desítky procent, ale i tak by se jednalo o zajímavý příspěvek do celkové bilance.

Speciální koncovka kabelu u modelu Kie KV6 umožňuje připojení kabelu pro externí dodávku energie, třeba pro dobití elektrokola. (foto: Kia)
Speciální koncovka kabelu u modelu Kie KV6 umožňuje připojení kabelu pro externí dodávku energie, třeba pro dobití elektrokola. (foto: Kia)

Jedná se ale o relativně sofistikovanou záležitost, která bude dávat smysl, až bude elektromobilů v provozu opravdu hodně. Obousměrné plynutí elektřiny si navíc vyžaduje odpovídající technické vybavení nejen na straně automobilů, ale i dobíjecí infrastruktury a především distribuční sítě.

Bude nutné vyřešit koordinaci nabíjení a komunikační rozhraní se všemi zúčastněnými stranami, ale rovněž správu jednotlivých transakcí. Vše by se přitom mělo odehrávat zcela automaticky v závislosti na nějakém přednastavení a k dokumentaci kontraktů by měla sloužit technologie blockchainu.

V různých zemích se bude technologie V2G vyvíjet různě. Kupříkladu ve Velké Británii by podle průzkumů společnosti Electric Nation mělo do roku 2050 využívat technologii V2G téměř polovina tamních domácností.

Frances Arnoldová je sice vystudovaná letecká inženýrka, svou Nobelovu cenu v roce 2018 ovšem získala v oboru poměrně vzdáleném, v chemii. Nobelův výbor ji – a dva její kolegy a zároveň vědecké soupeře – ocenil za obrazně řečeno zkrocení evoluce pro potřeby vědy.

Podařilo se jí přijít se systémem pro „evoluci“ lepších enzymů. Enzymy jsou katalyzátory chemických reakcí v buňce, a tak mají celou řadu využití v chemii či medicíně. Bohužel naše znalosti nejsou takové, abychom dokázali vytvořit nový, účinný enzym „na přání“. Arnoldová (za přispění řady dalších kolegů, na které se nedostalo) přišla s metodou řízení evoluce podle přání člověka.

Vytvořila laboratorní obdobu přirozeného výběru, ve kterém imperativ „přežij do další generace“ nahradil lidský příkaz, například „rychle se navaž na látku X“. Na to navazuje postup pro napodobení mutačního procesu, který umožňuje rychle měnit podobu dané chemické látky („mutace“) a rychle ověřovat jejich účinnost. A to vše – na rozdíl od evoluce – v časových měřítkách blízkých člověku. Dnes lze s pomocí řízené evoluce vyrábět nejen účinnější enzymy, než jsou ty přírodní, ale i enzymy, které umožňují v přírodě nedosažitelných reakcí.

Metodu používají vědci i průmysl, a třeba výrobu řady léčiv si bez ní dnes nelze představit. Arnoldová konzistentně tvrdí, že od začátku si byla jistá tím, že její výzkum je skutečně převratný. „Jen mi 20 let trvalo, než jsem o tom přesvědčila zbytek světa,“ řekla novinářům po udělení ceny.

Cesta ke světlu

My se ovšem věnujme tomu, co Arnoldová dělá dnes – a co by tedy teoreticky mohlo být zajímavé za dalších 20 let. Je vedoucí vlastní velké laboratoře na Kalifornské univerzitě, takže její záběr je samozřejmě širší (spoustu práce za ni udělají jiní). Jedno téma se ovšem v každém případě v její práci vrací – a to je využití solární energie. Na pohled nejde o žádnou technologickou novinku, koneckonců fotovoltaika a její využití v energetice je jedním z největších témat posledního desetiletí v oboru. Arnoldová ale má zamířeno na jiný cíl: fotosyntézu.

Oprašme školní znalosti: rostliny při fotosyntéze s pomocí slunečního záření štěpí vodu na kyslík, elektrony a nabité vodíkové ionty (protony). Protony a elektrony se pak slučují s oxidem uhličitým a vytvářejí cukr glukózu. Ta se pak v rostlině ukládá v podobě škrobu a celulózy, což jsou jednoduše molekuly glukózy s dlouhým řetězcem (takzvané polysacharidy), které slouží jako zdroj energie pro rostlinu i materiál pro její další růst. Nu, a „odpad“ z procesu, tedy kyslík, dává přežít nám i dalším tvorům.

Fotosyntéza není nijak efektivní proces. Maximální teoretická čistá účinnost (po odečtení veškerých respiračních ztrát) činí zhruba 4 % – rostlina tedy v ideálním případě může k vytvoření cukrů využít jen každý 25. foton, který na její listy dopadne.

V průměru je to ještě podstatně méně, protože takto intenzivní může být proces pouze po krátkou dobu a za předpokladu dostatku vody a živin. Zavlažované a hnojené plodiny mohou během vegetačního období dosáhnout v průměru 2% účinnosti a nejproduktivnější lesy mírného a tropického pásu se blíží průměrné účinnosti 1,5 %. Globální kontinentální průměr činí pouze 0,33 %.

A protože oceánský plankton mění na biomasu méně než 0,1 % dopadajícího záření, průměr za celou biosféru činí tedy ani ne 0,2 %. Takže ne každý 25., ale zhruba každý 500. foton je skutečně využit k růstu rostliny.

Právě to je důvod, proč biopaliva nejsou a v dohledné době rozhodně nebudou vhodnou alternativou k jiným používaným palivům – vyprodukují na plochu příliš málo energie. Proti tomu využití fotovoltaiky nabízí v praktických podmínkách účinnosti kolem 15 % a v blízké budoucnosti ještě o něco více. Tak proč ztrácet čas s fotosyntézou?

Co vlastně chceme

Odpověď je asi většině čtenářů jasná: fotosyntéza slouží k produkci energie připravené k uložení. Z fotovoltaiky sice dokážeme dnes již poměrně levně vyrábět elektřinu připravenou k okamžité spotřebě, ale problém jejího skladování je stále nevyřešený – přesněji řečeno, řešení jsou zatím pro řadu aplikací příliš drahá. Samozřejmě, proces by se musel trochu změnit; glukózy prostě tolik nepotřebujeme.

Frances Arnoldová před počátkem své vědecké dráhy (foto Frances Arnoldová/Nobelprize.org)
Frances Arnoldová před počátkem své vědecké dráhy (foto Frances Arnoldová/Nobelprize.org)

Dobrou zprávou je, že již dnes víme o oblastech, ve kterých bychom účinnost přírodního procesu mohli naopak poměrně jednoduše překonat. Jednou možností je využití nanočástic s extrémně velikým povrchem k zachycování dopadajícího světla. Plocha takového materiálu může být na mikroskopické úrovni podstatně větší než u listu. Na pohled to sice není vidět, ale dnes dokážeme navrhovat materiály, jejichž povrch představuje pro světlo velmi účinnou past.

Nevyřešené problémy ovšem stále převažují. Největší a nejdůležitější výzva spadá do odborného ranku Frances Arnoldové. Její specialitou je vývoj nových enzymů, tedy katalyzátorů chemických reakcí v těle. A přesně v nich spočívá hlavní nevýhoda laboratorních „umělých listů“. Je zapotřebí vyvinout levnější, odolnější a také účinnější materiály, aby se vůbec dalo uvažovat o jejich nasazení v praxi.

Otevřenou otázkou je i to, který způsob využití získané energie je vlastně pro naše potřeby nejlepší. Bude výhodnější pracovat na lepších katalyzátorech pro proces sluneční katalýzy vody, tedy její rozklad na kyslík a vodík, který by pak mohl sloužit jako zdroj energie? Nebo bude lepší udělat ještě o krok více a rovnou v rámci jednoho procesu vytvářet uhlovodíková paliva, tedy v podstatě ekvivalent ropy? Šlo by patrně o jednodušší molekuly s kratšími řetězci, které se snáze vytvářejí, ale také pak lépe zpracovávají a spalují.

První postup je přece jen jednodušší, a zdá se nejsnáze dosažitelný. Pokud to ovšem dovolí historie naší energetiky: současná infrastruktura totiž není na příchod vodíku připravena. „Dnes si s ním můžete maximálně nafouknout balónek,“ zavtipkoval před několika lety poněkud hořce Daniel Nocera, který se na slavném americkém MIT věnoval právě vývoji umělé fotosyntézy. Vyrobil tehdy v laboratoři „křemíkový list“ (křemíkovou oplatku s katalyzátorem), který za ideálních podmínek měl účinnosti kolem 10 %. Navíc s využitím ne úplně drahých materiálů.

Druhá generace

Což je vše slibné, ale systém trpěl celou řadou neduhů, které nešlo jednoduše vyřešit. A jak se Nocera brzy přesvědčil, sehnat na podobný program peníze je těžké. Jeho start-up se rychle přeorientoval na vývoj průtokových baterií, a pak se ho teprve podařilo prodat společnosti Lockheed Martin.

Nocera se zatím svého nápadu nevzdal a v Indii pracuje na další generaci systému. Ta propojuje upravenou verzi jeho křemíkového listu s geneticky upravenou verzí bakterie živící se vodíkem (jak vidno, i vědci uznávají, že evoluce je v mnoha ohledech dále než jejich poznání). Bakterie se tedy živí vodíkem vznikajícím z článku a díky genetické úpravě produkují nejen biomasu, ale také alkoholy. Účinnost byla znovu kolem deseti procent, a tak zhruba o řád vyšší než u běžných rostlin.

První laboratorní prototyp "umělého listu" připravený na MIT na přelomu první a druhé deskády 21. století (foto A.Nocera/MIT)
První laboratorní prototyp „umělého listu“ připravený na MIT na přelomu první a druhé deskády 21. století (foto A.Nocera/MIT)

Nocera tentokrát zkouší jinou strategii a snaží se projekt prosadit v Indii, která má méně rozvinutou energetickou infrastrukturu. To znamená, že je do ní méně investováno a nabízí se příležitost vyzkoušet nezavedené postupy. V tomto případě by to mohla být výroba biopaliv ve speciálních tancích, například pro vozidla v odlehlejších koutech rozvojových zemí.

Ale na úspěch projektu bychom rozhodně neradili v tuto chvíli nikomu sázet. Všichni odborníci se vzácně shodují na tom, že v ceně nebude moci „umělá fotosyntéze“ fosilním palivům konkurovat. Není tedy příliš mnoho důvodů investovat ani do vývoje, ani do rozvoje. Arnoldová a Nocera jistě mohou přijít na spoustu zajímavých řešení, ale bez finanční injekce se dále nepohnou. A v takovém případě tedy ani 20 let nebude na přesvědčení zbytku světa stačit.

To neznamená, že výzkum je marný. Na výrobu paliva mohou být tyto systémy příliš drahé. Ovšem lepší katalyzátory mohou najít užití v oborech s výrazně větší marží, například v chemickém či farmaceutickém průmyslu. Kouzlo snu o „umělém listu“ spočívá v tom, že inspiruje. O mnoho více bychom od něj asi v blízké době čekat neměli.

Load More