Skupina ČEZ chce do konce roku rozhodnout, s kým postaví továrnu na baterie v areálu bývalé hnědouhelné elektrárny Prunéřov I na Chomutovsku. Novinářům to řekl 30. září ředitel společnosti Daniel Beneš. První fáze projektu by podle něj mohla být hotova kolem roku 2025.

Plánovaná česká továrna na baterie do elektromobilů, takzvaná gigafactory, by mohla podle informací ČEZ vyrobit baterie o kapacitě více než 30 gigawatthodin, což vystačí pro 400 až 800 tisíc osobních automobilů ročně.

„Je to tak, že jednání se Škodou Auto z koncernu Volkswagen vedeme skoro celý rok, ale je ještě předčasné komentovat finální dohodu, protože tu jsme ještě neudělali,“ uvedl Beneš s tím, že jednání pokračují vedle toho s dalšími partnery převážně z Asie. Premiér Andrej Babiš (ANO) uvedl, že 11. října přijede předseda představenstva Volkswagenu.

Memorandum o podpoře plánovaného projektu továrny na baterie v Česku podepsali na konci července vicepremiér Karel Havlíček (za ANO) a ředitel ČEZ. Podle dřívějších informací má investice v první fázi činit minimálně 52 miliard korun a v souvislosti s ní se předpokládá vznik minimálně 2300 nových pracovních míst. Favoritem pro stavbu je právě areál bývalé hnědouhelné elektrárny Prunéřov 1, kterou ČEZ loni odstavil.

Bude světová?

Znamenalo by to tedy nejspíše, že ČEZ plánuje roční kapacity zvažované “obrtovárny” někde v rozmezí 20-50 gigawatthodin roční výroby. Je to samozřejmě pouze hrubý odhad, který je založený na průměrné kapacity baterie elektromobilu kolem 50 kWh (v roce 2021 byla 43 kWh).

To je plně srovnatelné s Gigafactory 1, známé také jako Giga Nevada, tedy první závodem tohoto typu, který postavily v Nevadě společnosti Tesla a Panasonic (podíl Panasonicu byl významný a jeho technologie byly pro rozjezd klíčové).

Na pohled není skromný cíl. Nevadská Gigafactory 1 byla v roce 2020 největším výrobnou baterií ve světě a vyrobila baterie s kapacitou cca 37 GWh. ČEZ tedy v podstatě říká, že chce zvládnout podobý úkol jako Tesla. Je ovšem nutné vzít v úvahu, že know-how na stavbu podobných podniků rychle přibývá a postavit desátou či dvacátou továrnu takového typu už nebude tak obtížný úkol jako postavit první.

odle Venkata Srinivasana, ředitele Argonne Collaborative Center for Energy Storage Science, by jen Spojené státy k pokrytí předpokládané poptávky mohly během 15 let potřebovat 20 až 40 gigatováren s celkovou terawattovou kapacitou nových baterií. “Právě teď na to Spojené státy nemají dostatek materiálů, takže klíčem k rozjezdu výroby bude náhrada části dnes používaných materiálů a recyklace,” řekl Srinivasan pro IEEE Spectrum.

General Motors, který se snaží bojovat s dnes dominantními asijskými výrobci, staví v Ohiu a Tennessee továrny s celkovou kapacitou 70 gigawattů. To je dvojnásobek kapacity nevadské gigatovárny společnosti Tesla.

Ford plánuje ve spolupráci s jihokorejskou společností SK Innovation zvýšit do roku 2030 kapacitu v Severní Americe na 140 GW, a celosvětově na 240 GW. Ford odhaduje, že k tomu bude zapotřebí šest továren ve Spojených státech a deset ve zbytku světa.

Ale i tak samozřejmě půjde o projekt, na kterém se dá leccos zkazit. Konečné rozhodnutí by mělo padnout v roce 2023, pak by mohla následovat stavba závodu s tím, že zahájení těžby by bylo v roce 2025. V současnosti prý běží práce na povolovacích řízeních včetně běžícího procesu EIA (posudek vlivu na životní prostředí).

České lithium

Většina expertů, které nedávno oslovila ČTK, se shodla, že plánovaný vznik továrny na baterie pro elektromobily v Česku je pro tuzemský automobilový průmysl kvůli vývoji na trhu a směřování Evropy k nízkoemisním zdrojům téměř nutností.

Šéf ČEZ Beneš nedávno uvedl, že továrna na baterie pro elektroautomobily by při optimistickém scénáři mohla v ČR stát mezi roky 2026 až 2028. Dodal, že výše podpory státu pro plánovanou stavbu gigafactory v tuto chvíli není dojednaná, tvořit ji podle něj má přímá podpora i daňové úlevy.

Vedoucí odboru surovinového informačního systému České geologické služby Jaromír Starý uvedl, že v Česku je v současnosti evidováno 571,5 milionu tun rudy s 1,14 milionu tun lithia.

Uvedl, že v ČR jsou proti dřívějším třem už jen zhruba dvě procenta světových zdrojů lithia. „Průzkumy a přírůstky zdrojů ve světě pokračují,“ vysvětlil. V Česku je malé množství na ložisku ve Slavkovském lese a naprostá většina na Cínovci. „Předmětem dobývání budou nejbohatší a nejpřístupnější části cínoveckého ložiska,“ dodal.

Pestré složení cínovecké rudy znamená, že zpracování by probíhalo v několika krocích. Separace wolframu a cínu se dá nejspíše provádět odstředivou silou, protože nerosty, ve kterých tyto dva prvky jsou na Cínovci obsaženy, jsou poměrně těžké. V podstatě jde o průmyslovou obdobu rýžování zlata, při kterém při rotaci postupně vypadávají z pánve lehčí složky, až na místě zůstanou nejtěžší zlatá zrna.

Cinvaldit, tedy nerost obsahující lithium, by se měl údajně z rozdrcené rudy získávat magnety. Společnost European Metal Holding tvrdí, že by mělo jít o proces velmi efektivní, s výnosem 92 procent, což je z hlediska těžařů výrazné plus.

Světovému obchodu s bateriemi dominuje vybraná hrstka. Jen šest společností dodalo v roce 2020 87 procent všech bateriových článků do elektromobilů. Firmy BYD, CATL, LG Energy Solution, Panasonic, Samsung SDI a SK Innovation.

Zdaleka největším odběratelem byla společnost Tesla. Ta ve stejném časovém období do automobilů namontovala baterie s celkovou kapacitou 22,5 gigawatthodiny. To bylo téměř stejně jako součet produkce pěti nejbližších konkurentů dohromady: BYD, Hyundai, Mercedes, Renault a Volkswagen.

PořadíFirma
Odběratelé
Výroba (v GWh)Tržní podíl (v %)
Růst mezi lety 2016 a 2020 (v %)
1Contemporary Amperex Technology Co. (CATL)BMW, Dongfeng Motor Corp. Honda, SAIC Motor Corp. Stellantis, Tesla, Volkswagen Group, Volvo Car Group21,5
26
3400

2LG Energy SolutionGeneral Motors, Groupe Renault, Stellantis, Tesla, Volvo, VW Group21,4 26 1193
3PanasonicTesla, Toyota14,1 17 214
4Samsung SDIBMW, Ford, Stellantis, VW Group5,5 7399
5BYD Co.BYD, Ford5,57113
6SK InnovationDaimler, Ford, Hyundai, Kia3,44226
7China Aviation Lithium Battery (CALB)GAC Motor, Zhejiang Geely Holding Group Co.2,73321
8Gotion High-TechChery Automobile Co., SAIC, VW Group1,4223
9Automotive Energy Supply Corp. (AESC)Groupe Renault, Nissan1,42 46
10Ruipu Energy Co. (REPT)Dongfeng, Yudo Auto0,61100
Další4,25122
Celkem81,6100355
Největší světoví výrobci baterií v roce 2020. (Zdroje: IEEE Spectrum, Adamas Inteligence, Businesskora, Electrive, BMW, Ford, Honda, Volvo)

Ve stejné době se zvedla „poptávková tsunami“. Ta vyvolala nebývalý tlak na dodavatelské řetězce materiálů pro baterie a motory a vyvolalo prudký nárůst cen lithia, niklu, kobaltu, neodymu, praseodymu, dysprosia a terbia.

Jak uspokojit poptávku

Jak svět uspokojí svět poptávku po bateriích? Podle Venkata Srinivasana, ředitele Argonne Collaborative Center for Energy Storage Science, by jen Spojené státy k pokrytí předpokládané poptávky mohly během 15 let potřebovat 20 až 40 gigatováren s celkovou terawattovou kapacitou nových baterií. “Právě teď na to Spojené státy nemají dostatek materiálů, takže klíčem k rozjezdu výroby bude náhrada části dnes používaných materiálů a recyklace,” řekl Srinivasan pro IEEE Spectrum.

General Motors, který se snaží bojovat s dnes dominantními asijskými výrobci, staví v Ohiu a Tennessee továrny s celkovou kapacitou 70 gigawattů. To je dvojnásobek kapacity nevadské gigatovárny společnosti Tesla.

Ford plánuje ve spolupráci s jihokorejskou společností SK Innovation zvýšit do roku 2030 kapacitu v Severní Americe na 140 GW, a celosvětově na 240 GW. Ford odhaduje, že k tomu bude zapotřebí šest továren ve Spojených státech a deset ve zbytku světa.

Tempo růstu je ale již dnes ohromující. Společností CATL (Contemporary Amperex Technology) a LG Energy Solution v posledních čtyřech letech vyrostly řádově o tisíce procent.

Stará technika, nové triky

Rychlý nárůst poptávky může vytvořit něco, co banka Goldman Sachs nazývá „komoditním supercyklem“. Ten může dlouhodobě zatížit dodavatelské řetězce a ceny lithia a dalších materiálů (například vzácných kovů). O přijetí elektrických vozidel také rozhodnou do značné míry vlády a spotřebitelé. Růst a vládní signály v souvislosti s klimatickou krizí však naznačují, že přichází období boomu v oblasti baterií.

Zvláště patrné je v to ve výrobě výkonných článků. Všichni výrobci automobilů se rádi chlubí nejlepším dojezdem nebo výkonem ve své třídě. Navíc mohou zákazníky oslnit rychlým nárůstem těchto parametrů. Energetická hustota bateriových článků se za posledních deset let téměř ztrojnásobila a přední chemické články nyní dosahují mohou obsahovat 300 watthodin na kilogram.

Ale zároveň musí výrobci myslet na to, co do svých baterií dávají. Některé materiály budou nedostatkovější, a tedy dražší než jiné. Příkladem může být kobalt. Ten se z velké části těží v podmínkách, které by do 21. století neměly patřit. A firmy pak samozřejmě slyší i na to, že vzhledem k rozsahu nabídky může jeho cena rychle stoupat.

Rizikový kobalt tak v bateriích nahrazují jiné prvky, především nikl. Závod o zvýšení obsahu tohoto kovu v bateriích vede dnes společnost LG Energy Solution. Výkonné NCMA články (nikl, kobalt, hořčík, hliník) této jihokorejské společnosti budou brzy pohánět Tesly vyráběné v Číně a řadu elektromobilů General Motors. Mají také nejvyšší zastoupení niklu v odvětví: elektrolyt ho obsahuje 88 %.

Přitom kapacita je vyšší než u starších modelů s vyšším obsahem kobaltu. Výrobci tak mohou do daného prostoru vtěsnat více energie a dojezdové vzdálenosti, aniž by museli zásadně měnit konstrukci baterií.

O krůček níže jsou články NCM811 od hráčů, jako je Contemporary Amperex Technology Co. (CATL), LG a SK Innovation, s poměrem niklu, kobaltu a manganu zhruba 8:1:1. Castilloux říká, že jedním z triků je přidat nikl a omezit kobalt a zároveň zajistit tepelnou stabilitu, protože požáry škodí obchodu.

Adamas Intelligence uvádí, že 60 % všech baterií osobních elektromobilů nasazených v roce 2020 bude obsahovat články s vysokým obsahem niklu, jako jsou články NCA nebo NCM řady 6 až 8.

Zkušebnou nové a zatím ve velkém nenasazované technologie NCMA je dnes Čína. Ale výrobci s nimi nechtějí v Číně zůstat, chtějí prorazit na západní trhy.

Ale na technologii je ještě co zlepšovat. Například špičkové články společnosti CATL se v současnosti vyrábí velmi neefektivně. Společnost neustále rychle navyšuje výrobu a procesy ladí teprve postupně. Podle Castillouxe v současné době na každý vyrobený článek CATL s vysokým obsahem niklu připadá zhruba jeden vadný článek, který jde na recyklaci (což je také špatné pro obchod).

Baterie pro masy?

Určitě to nebude jen neustálý pochod směrem k lepším a výkonnějším bateriím. Na výsluní se například vrací lithium-železo-fosfátové (LFP) baterie, které byly kdysi považovány za zastaralé. A to zejména v Číně, kde společnost Contemporary Amperex Technology Co. (CATL), která je nyní největší světovou bateriovou společností, dodává LFP pro standardní model 3 společnosti Tesla.

Elon Musk nedávno vyvoval značnou pozornost, když naznačil, že Tesla dlouhodobě přechází na levnější, bezkobaltové baterie LFP. „To je vlastně dobře, protože železa je na světě dost,“ řekl v červenci 2021 před novináři.

LFP stále tvoří méně než 10 % všech li-ion článků. Ovšem podle analytiků se množství do výrobků článků v druhé polovině roku 2020 meziročně zvýšilo o 600 %. LFP má menší energetickou hustotu než na nikl bohaté litihum-iontové články, ale jejich katodové materiály jsou levnější.

K řešení nevýhod v oblasti účinnosti přispívá konstrukce „cell-to-pack“, která upouští od použití nesčetných válcových článků uspořádaných do modulů. Větší hranolové články se integrují přímo do balení, což šetří místo, snižuje počet součástek a zjednodušuje chlazení a připojení. „Balení je v podstatě jeden velký modul,“ říká Castilloux.

Nejprodávanější čínský elektromobil, Wuling Mini za 4 500 dolarů, používá balíčky LFP od výrobců, jako je Hefei. Srinivasan říká, že LFP se pro některé aplikace jeví jako ideální. “Levnější auto s LFP, které vydrží dlouho a ujede kolem 250 kilometrů, není špatné,” říká.

Objevuje se nový, v podstatě celosvětový trend: výrobci automobilů – včetně General Motors, Tesly a Volkswagenu – používají baterie s vyšším obsahem niklu (a případně dalších dražších surovin) pro vozy s delším dojezdem nebo vozy sportovní. Baterie LFP se pak používají pro levnější, základní modely.

Během nedávného horovu Elona Muska s investory se objevila věta, která nejednoho fanouška i akcionáře mohla vyděsil: Musk řekl, že výroba nového elektrického článku pro vozy firmy narazila na “úzké hrdlo”. Firma sice pokročila v případě výroby, ale do jejího rozjezdu ještě zbývá spoustu práce.

Výraz “úzké hrdlo” znalcům Tesly totiž připomíná téměř smrtelné období firmy na přelomu let 2017 a 2018. Kalifonrská společnost tehdy měla veliké problémy s přípravou výroby Modelu 3. Musk musel vyškrabávat poslední finanční rezervy a přespával v kanceláři.

Model 3 samozřejmě uspěl, a firma se díky němu nadechla k dalšímu ohromnému růstu. Může se zdát, že tentokrát jsou sázky nižší – jde “jen” o novou baterii – ale tak to není.

Význam nového článku s označním 4680 pro Teslu je těžké přecenit. Měl by totiž dodat “šťávu” Muskovům sny o milionůch elektromobilů ročně. Dojezd vozů by se měl zvýšit o více než 50 %, 16 % z toho díky vyšší energetické hustotě nového článku, a náklady na baterie by měly klesnout na polovinu. Díky tomu by se v prodeji měla v příštích letech objevit Tesla za 25 tisíc dolarů, tedy zhruba půl milionu korun. (V Česku by samozřemě byla dražší minimálně o HDP.)

O hodně lepší váleček

Články v bateriových souborech jejích modelů dodnes velmi nápadně připomínají tužkové baterie. První generace článků Tesly se tak nazývala 18650, protože měla rozměry 18 na 65 milimetrů (tužkové baterie AA mají 14,9 na 50 mm, tyto první baterie Tesly tedy nebyly o mnoho větší). Pak přišly větší 2170 (21 na 70 mm), které měly tedy zhruba o polovinu větší objem. V září 2020 pak Tesla oznámila přechod na větší články 4680, které už mají zhruba pětkrát vyšší kapacitu než původní články 18650.

K tomuto údaji jedna poznámka, která dobře vystihuje Muskův postoj k reklamě a marketingu: během zmíněné prezentace v září 2020, během tzv. Battery Day, se opakovaně mluvilo o několikanásobně vyšší kapacitě. Nikdo ovšem zároveň jedním dechem nedodal, že zvýšení kapacity je dáno téměř úplně prostě zvýšením objemu baterie. Ne že by Tesla vysloveně lhala. Neudělala ale nic pro to, aby nezkušené posluchač nedošel ke špatnému závěru.

Vysloveně nepřesné pak bylo tvrzení, že nové baterie v automobilech Tesla jsou unikátní svou “strukturální konstrukcí”. To jednoduše znamená, že články jsou v baterii (paralelně) zapojeny co nejefektivněji, tedy aby se uspořilo místo a hmotnost. Ale stejný princip už použvají i další výrobci, například v mikroelektromobilu Wuling Mini.

Skutečných novinek je ale i přes tyto výhrady dost. Jedna spočívá ve způsobu odvodu a přívodu elektřiny ze samotného aktivního materiálu na póly baterie. To mají na starost v článcích malé vodivé prvky – anglicky nazývané „tabs“ – obvykle vyrobené z niklu, hliníku, případně mědi. „Tabs“ jsou jedním ze slabších míst baterie. Když se baterie rychle nabíjí či vybíjí, právě v těchto kovových prvcích vzniká velké množství tepla – což je pro lithiovou baterii samozřejmě velký problém.

Tesla si v roce 2020 podala patent na baterie, které se bez těchto vodivých prvků mají zcela obejít (baterie s „tabless“ elektrodami). Změna by měla údajně výrazně zjednodušit výrobu. Umísťování a připevňování „tabů“ totiž podle Muska i Baglina výrazným způsobem zdržovalo výrobu článků. Proces není okamžitý, a tak se kvůli němu musí článek na své cestě linkou zastavit. Bez těchto prvků se údajně může linka pohybovat v podstatě kontinuálně. Můžeme si ji údajně představit jako například plnicí linku na nápoje.

Odstranění kovových prvků by také mělo údajně velmi výrazně snížit množství odpadního tepla, které vzniká při rychlém nabíjení baterií. Což v důsledku může vést k nabíjení většími proudy a tedy zkrácení zastávek na dobíjecích stanicích.

Samozřejmě to je spíše hypotetická úspora. Rychlost dobíjení do značné míry záleží na parametrech samotných nabíječek, které provozovatel z pochopitelných důvodů nemůže měnit každý rok. Doma také tak velkými proudy těžko bude někdo dobíjet. „Tabless“ baterie by však mohly mít například zvýšenou životnost. Vyšší teploty bateriím rozhodně neprospívají.

Model článku 4680 společnosti Tesla (kredit Reddit user u/Bimmer3389)
Model článku 4680 společnosti Tesla (kredit Reddit user u/Bimmer3389)

Bez kanálů

Novým typem baterie by měla do jisté míry i dohánět konkurenci. Ještě v Modelu 3 totiž používá systém chlazení, který není úplně efektivní. Mezi řadami článků má kanálky na odvod odpadního tepla, které vlastně nejsou zapotřebí. Většina tepla totiž vzniká na obou koncích článků. Dělat mezi nimi místo na kanály je podle jiných výrobců znalců oboru v podstatě zbytečně.

Samozřejmě, znalcům nemusíte věřit. V případě Tesly se už mnohokrát mýlili. V tomto případě ale v podstatě uznává svou chybu i Tesla sama. Nové “balení” baterie kanálky mezi články mít nebude, místo toho budou články umístěny na kapalinou chlazené desce. Velmi podobně jako to je u elektromobilů GM, Fordu, Volkswagenu, Porsche a tak dále a tak podobně.

Místo by se mělo uspořit i jinak. Konstruktér a konzultant Sandy Munro, který proslul svým YouTube kanálem, kde rozebíra elektromobily, nedávno odhadl, že Tesla dokáže zvýšit výkon bateriových celků o více než 50 procent při zachování stejných rozměrů. Do rozměrů baterie pro Teslu 3, která má kapacitu 72 kWh, by se podle něj mohla vejít nová baterie s kapacitou cca 130 kWh.

Kromě zmíněné úspory vzniklé změnou chladícího systému by k tomu měly významně přispět i další změny v konstrukci. Více dílů by mělo být slepeváno, a také svařované části konstrukce se dají udělat efektivněji. Celkem by tam nové bateriové celky podle něj mohly obsahovat o 30 až 40 procent méně oceli.

Trochu to osolíme…

Nový typ 4680 bude mít pozměněné například i elektrody. Jedna změna bude na tradičně uhlíkové anodě. Uhlík se pro anody používá, protože dobře vede proud, má ovšem poměrně malou kapacitu. Na uložení jednoho lithiového iontu je zapotřebí „klece“ tvořené šesti atomy uhlíku. Naproti tomu například jediný atom křemíku dokáže navázat čtyři atomy lithia.

Tato výhoda je dlouho známá a s křemíkem se hojně experimentovalo, bohužel má i nepříjemné vlastnosti. Významnou je, že po pohlcení elektronů „bobtná“ – velmi výrazně se změní jeho objem, a to několikanásobně (řekněme pro jednoduchost zhruba na trojnásobek původního). Pokud postavíte baterie z křemíku s pomocí běžných postupů, stačí jen několik nabití, anoda se roztrhá na malé kousky a celý článek je k ničemu.

Přesto se v anodách křemík už používá, a nejen u Tesly. Je to totiž jeden z nejnadějnějších způsobů, jak kapacitu baterií zvýšit. Ovšem v současných anodách je křemíku málo, řádově jednotky procent z celkového objemu. Příměs je tak malá, že nárůst objemu není velký problém a zvýšení kapacity o několik procent za něj stojí.

Na Battery Day zaznělo, že množství křemíku by se mělo zvýšit několikanásobně, aby se dojezd při zachování objemu baterie zvýšil cca o 20 procent. Problém s „bobtnáním“ chce Tesla vyřešit tak, že baterie nebude znovu čistě křemíková – bude obsahovat i elastické materiály, které se mohou zmenšit tak, aby se kompenzovalo zvětšování křemíku v anodě. Jak vidno, v tomto ohledu je ještě co zlepšovat.

Změny by se měly dotknout i druhé elektrody, tedy katody (poznámka bokem: v dobíjecích bateriích se samozřejmě role elektrod mění podle toho, zda se nabíjí, či vybíjí, ale pro zjednodušení se jako anoda obvykle označuje elektroda, na které během vybíjení dochází k oxidaci). V první řadě Tesla potvrdila, že se pokusí zbavit kobaltu v bateriích.

Jak již asi víte, kobalt se používá v katodě baterií, obvykle v kombinaci s niklem a manganem v podobě materiálu známého jako NMC. Kobalt je z těchto materiálu nejdražší, navíc je dnes jeho produkce vázána na problematickou těžbu v Kongu.

I proto se většina výrobců snaží kobaltu zcela zbavit. V minulosti byly v NMC ve stejném poměru 1 : 1 : 1 nikl, mangan a kobalt. V nových bateriích ovšem tvoří velkou část materiálu pouze nikl (někdy téměř 90 procent) a kobaltu je cca 5 procent. Tesla tedy znovu není jediná, je v podstatě ilustrací obecného trendu, který by měl zjednodušit a zlevnit výrobu baterií obecně. Tesla možná bude, možná nebude první, důležité je, že vývoj pokračuje. V roce 2021 by mělo být vyrobeno cca 10 GWh těchto baterií, tak uvidíme, jaké informace od výrobce dostaneme – a jaké uniknou.

Článek Panasonic staršího typu 2170 určený pro elektromobily Tesla (kredit Tesla/Panasonic)

Za sucha to stále nejde

Součástí linky nebude podle všeho další technologie, od které si fanoušci hodně slibují. Tesla totiž zhruba v květnu 2019 dokončila koupi firmy Maxwell Technologies. Ta si dala mimo jiné za cíl radikálně zjednodušit jeden ze složitých kroků ve výrobě baterií a vyrábět elektrody „za sucha“.

Dnes se vstupní materiály pro obě elektrody nejprve musí rozpustit, pak lisovat a vysušit. Celý proces nejen výrobu zdržuje, ale také zdražuje, už kvůli nákladům na energie a nutné vybavení.

Maxwell Technologies přišly s demonstrací procesu výroby za sucha, který by se měl bez těchto kroků obejít. Po jeho dotažení do výroby by se obě elektrody měly velmi jednoduše lisovat za sucha a nízkých teplot do požadované podoby tenkého filmu.

Jak ovšem potvrdili Musk a Baglin, zatím jsou k dispozici pouze první prototypy technologie ve velmi malém, v podstatě laboratorním měřítku. Do výroby má tedy proces ještě opravdu daleko a nedá se předpokládat, že by Tesla tuto technologii dokázala dotáhnout do praxe během tří let, jak to slibuje u většiny ostatních „zlepšováků“, které na Battery Day prezentovala.

Ale možná se samozřejmě pleteme. V prezentacích Tesly bývá těžké odlišit šum od skutečného signálu.

Nejlepší ve výrobě

Všechna dílčí zlepšení mají jeden hlavní cíl: výrazně zjednodušit, zrychlit a tedy i zlevnit výrobu baterií ve velkém. Tesla, která sází na to, že investory naláká na velké cíle, tak především dala najevo, že hodlá ve výrobě baterií přejít na kvantitaivně novou úroveň.

Firma si dala za cíl vyrobit ročně baterie s celkovou kapacitou od 10 do 20 terawatthodin. Celková roční výrobní kapacita je dnes o dva řády nižší, pohybuje se zřejmě někde v pásmu nad 300 GWh ročně. Rekordní Gigafactory v Nevadě, která ještě není dostavěna, je koncipována na výrobu kolem 150 GWh za rok.

Jak zvýšit výrobu řádově stokrát? Tesla má dva recepty. Stejně jako řada jiných firem samozřejmě chystá stavbu dalších továren na baterie. Ale zároveň tvrdí, že „zlepšováky“ představené v rámci Battery Day mohou velmi výrazně zvýšit výrobu v již stojících továrnách. Kontinuální výroba jednodušších baterií, které pojmou více energie, může údajně zvýšit produkci z jedné linky zhruba sedminásobně.

Toto číslo je nutné brát s rezervou, protože máme k dispozici pouze nablýskanou prezentaci a „tvrdá data“ jsou předmětem obchodního tajemství. Podle odhadů agentury Bloomberg se ceny baterií (kompletních baterií, ne pouze článků) v roce 2020 pohybovaly v průměru někde kolem 140 dolarů za kilowatthodinu. Na Battery Day se hovořilo o tom, že zavedení představených novinek by mělo cenu snížit zhruba o něco více než 50 procent.

Pokud by tomu tak bylo, cena by se měla poměrně dostat dosti hluboko pod bedlivě sledovanou hranici 100 dolarů za kilowatthodinu. Zhruba na ní by se přitom elektrické vozy mohly v pořizovací ceně začít rovnat vozům se spalovacím motorem. Tedy zhruba na úrovni nového modelu Tesly, jehož existenci Musk v prezentaci potvrdil. 

A kdy by to mohlo být? Tesla je známá tím, že nedodržuje slíbené termíny. Koncem dubna Musk uvedl, že do výroby baterie zbývá 12 měsíců, ne-li 18 měsíců. V tom případě by bylo možné, že stávající dodavatelé baterií pro Teslu, tedy společnosti Panasonic, CATL, LG Energy Solution a SK Innovation, možná dodají baterii 4680 dříve než samotná Tesla. (Nový šéf Panasonicu potvrdil, že jeho společnost do výroby článků 4680 mohutně investuje, pokud se ukáží jako životaschopné).

Po měsících mlčení Tesla v srpnu konečně potvrdila, že odklad skutečně přijde. Kvůli nedostatku baterií bylo představení jejího Cybertrucku posunuto na rok 2022. Tento masivní pick-up je spolu s (rovněž odloženým) tahačem Semi jedním z horkých kandidátů na využití článků 4680. Vzhledem k rozměrům to nepochybně bude “žrout” energie.

V nových typech elektromobilů se začíná stále více objevovat technologie obousměrné dodávky energie zvaná Vehicle-to-grid (V2G), Vehicle-to-home (V2H), Vehicle-to-building (V2B) a Vehicle-to-everything (V2X), která umožňuje využívat naakumulovanou energii pro jiné účely.

S takto vybavenými vozy si tak snadno dobijete své elektrokolo, můžete napájet přenosný chladicí box, v kempu zapojíte třeba osvětlení nebo elektrický vařič. Navíc můžete cestou pomoci trochou energie jinému elektromobilu s vybitou baterií, aby poté dojel k nejbližší dobíječce. A to není vše.

Ti, kdo mají doma svůj vlastní fotovoltaický systém, budou navíc moci ušetřit v době vysokého tarifu elektřiny energií z auta. A při výpadcích proudu jim baterie v autě po potřebnou dobu pomůže zajistit plnou nebo částečnou soběstačnost. V americkém Texasu si to letos vyzkoušeli v době silných mrazů a kolapsu sítě.

Auta jako powerbanky

Výhledově navíc takto uzpůsobené vozy pomohou vyrovnávat energetické špičky v rozvodné síti. Nejčastěji se mluví o technologii Vehicle-to-grid (V2G), která počítá s propojením s chytrou energetickou infrastrukturou. Majitelům takto uzpůsobených vozidel umožní naakumulovanou energii z fotovoltaických kolektorů na domě, popřípadě tu, kterou levně nabili za nízký tarif v noci, využít později, či ji prodávat do rozvodné sítě dráž v době špičky.

Tím pomohou vyrovnávat velmi rychle se měnící dodávky elektřiny z obnovitelných zdrojů, tedy z větrníků a solárních elektráren. Z elektromobilů se tak stanou v podstatě jakési powerbanky na čtyřech kolech, které budou součástí chytrých elektrických sítí. Energetický management tak s vysokou pravděpodobností zamíchá se zavedenými praktikami na trhu a pomůže ještě více rozšířit nabídku.

I na evropském trhu je už několik modelů, které mají příslušný hardware i software pro obousměrný tok energie. Velmi aktivní byli Japonci, které k rozvoji obousměrných dobíječek podnítila katastrofa ve Fukušimě v roce 2011, což vedlo k rozvoji technologie V2G u standardu CHAdeMO (Nissany Leaf a e-NV200, Mitsubishi Outlander PHEV).

Obousměrný tok energie ale umožňuje již i standard Combo CCS. Nejnověji u Hyundaie Ioniq 5 a Kie EV6. Další modely zatím dostávají z výroby příslušný hardware, přičemž software se bude nahrávat až následně, kdy bude zcela vyladěný. To je i případ Volkswagenu ID.3 či Škody Enyaq iV v provedení s největší 82kWh baterií. Kromě softwaru automobilky samozřejmě nabídnou i odpovídající domácí V2G wallboxy. Na této technologii pracují prakticky všechny automobilky i energetické firmy a v rámci řady pilotních projektů ji prověřují po celém světě.

Technologie V2G umožňuje rovněž napájet přenosný chladicí box a v případě potřeby napájet třeba osvětlení nebo elektrický vařič. (foto: Hyundai)
Technologie V2G umožňuje rovněž napájet přenosný chladicí box a v případě potřeby napájet třeba osvětlení nebo elektrický vařič. (foto: Hyundai)

Baterie pro elektrická vozidla jsou zdaleka nákladově nejefektivnější formou skladování energie, protože nevyžadují žádné další investice do hardwaru. Ve srovnání s jednosměrným inteligentním nabíjením lze u V2G efektivněji využívat kapacitu baterie. Ale je tu i jeden problém. Velmi drahé akumulátory mají omezený počet nabíjecích cyklů, proto může mít jejich zapojení do dodávek energetické soustavy negativní vliv na jejich životnost jejich baterií a integrovaných nabíječek v autech. 

Bude také hodně záležet, jestli automobilky ponechají většinou osmiletou záruku na baterii i v případě každodenního využívání V2G. Navíc je třeba počítat se značnými ztrátami. Studie ukazují, že při nabíjení auta a jeho opětovném vybíjení jsou ztráty 30 až 40 % energie, což není zrovna málo. Dalším problémem je fakt, že pro rozvodnou síť budou elektromobily trochu nepředvídatelný zdroj, neboť k síti nejsou připojeny nepřetržitě.

Temelín na kolech

Flotily elektrických aut budou výhledově plnit funkci jakýchsi malých elektráren. Do roku 2030 má být podle společnosti Virta, která se specializuje na výrobu V2G dobíječek, celosvětově v provozu 140 až 240 milionů elektrických aut, což při tom nižším odhadu znamená agregovanou úložnou kapacitou 7 TWh, což představuje pětiměsíční výrobu v jaderné elektrárně Temelín.

Samozřejmě ne všechny elektromobily by se do tohoto procesu zapojily, možná by to byly jen nižší desítky procent, ale i tak by se jednalo o zajímavý příspěvek do celkové bilance.

Speciální koncovka kabelu u modelu Kie KV6 umožňuje připojení kabelu pro externí dodávku energie, třeba pro dobití elektrokola. (foto: Kia)
Speciální koncovka kabelu u modelu Kie KV6 umožňuje připojení kabelu pro externí dodávku energie, třeba pro dobití elektrokola. (foto: Kia)

Jedná se ale o relativně sofistikovanou záležitost, která bude dávat smysl, až bude elektromobilů v provozu opravdu hodně. Obousměrné plynutí elektřiny si navíc vyžaduje odpovídající technické vybavení nejen na straně automobilů, ale i dobíjecí infrastruktury a především distribuční sítě.

Bude nutné vyřešit koordinaci nabíjení a komunikační rozhraní se všemi zúčastněnými stranami, ale rovněž správu jednotlivých transakcí. Vše by se přitom mělo odehrávat zcela automaticky v závislosti na nějakém přednastavení a k dokumentaci kontraktů by měla sloužit technologie blockchainu.

V různých zemích se bude technologie V2G vyvíjet různě. Kupříkladu ve Velké Británii by podle průzkumů společnosti Electric Nation mělo do roku 2050 využívat technologii V2G téměř polovina tamních domácností.

Frances Arnoldová je sice vystudovaná letecká inženýrka, svou Nobelovu cenu v roce 2018 ovšem získala v oboru poměrně vzdáleném, v chemii. Nobelův výbor ji – a dva její kolegy a zároveň vědecké soupeře – ocenil za obrazně řečeno zkrocení evoluce pro potřeby vědy.

Podařilo se jí přijít se systémem pro „evoluci“ lepších enzymů. Enzymy jsou katalyzátory chemických reakcí v buňce, a tak mají celou řadu využití v chemii či medicíně. Bohužel naše znalosti nejsou takové, abychom dokázali vytvořit nový, účinný enzym „na přání“. Arnoldová (za přispění řady dalších kolegů, na které se nedostalo) přišla s metodou řízení evoluce podle přání člověka.

Vytvořila laboratorní obdobu přirozeného výběru, ve kterém imperativ „přežij do další generace“ nahradil lidský příkaz, například „rychle se navaž na látku X“. Na to navazuje postup pro napodobení mutačního procesu, který umožňuje rychle měnit podobu dané chemické látky („mutace“) a rychle ověřovat jejich účinnost. A to vše – na rozdíl od evoluce – v časových měřítkách blízkých člověku. Dnes lze s pomocí řízené evoluce vyrábět nejen účinnější enzymy, než jsou ty přírodní, ale i enzymy, které umožňují v přírodě nedosažitelných reakcí.

Metodu používají vědci i průmysl, a třeba výrobu řady léčiv si bez ní dnes nelze představit. Arnoldová konzistentně tvrdí, že od začátku si byla jistá tím, že její výzkum je skutečně převratný. „Jen mi 20 let trvalo, než jsem o tom přesvědčila zbytek světa,“ řekla novinářům po udělení ceny.

Cesta ke světlu

My se ovšem věnujme tomu, co Arnoldová dělá dnes – a co by tedy teoreticky mohlo být zajímavé za dalších 20 let. Je vedoucí vlastní velké laboratoře na Kalifornské univerzitě, takže její záběr je samozřejmě širší (spoustu práce za ni udělají jiní). Jedno téma se ovšem v každém případě v její práci vrací – a to je využití solární energie. Na pohled nejde o žádnou technologickou novinku, koneckonců fotovoltaika a její využití v energetice je jedním z největších témat posledního desetiletí v oboru. Arnoldová ale má zamířeno na jiný cíl: fotosyntézu.

Oprašme školní znalosti: rostliny při fotosyntéze s pomocí slunečního záření štěpí vodu na kyslík, elektrony a nabité vodíkové ionty (protony). Protony a elektrony se pak slučují s oxidem uhličitým a vytvářejí cukr glukózu. Ta se pak v rostlině ukládá v podobě škrobu a celulózy, což jsou jednoduše molekuly glukózy s dlouhým řetězcem (takzvané polysacharidy), které slouží jako zdroj energie pro rostlinu i materiál pro její další růst. Nu, a „odpad“ z procesu, tedy kyslík, dává přežít nám i dalším tvorům.

Fotosyntéza není nijak efektivní proces. Maximální teoretická čistá účinnost (po odečtení veškerých respiračních ztrát) činí zhruba 4 % – rostlina tedy v ideálním případě může k vytvoření cukrů využít jen každý 25. foton, který na její listy dopadne.

V průměru je to ještě podstatně méně, protože takto intenzivní může být proces pouze po krátkou dobu a za předpokladu dostatku vody a živin. Zavlažované a hnojené plodiny mohou během vegetačního období dosáhnout v průměru 2% účinnosti a nejproduktivnější lesy mírného a tropického pásu se blíží průměrné účinnosti 1,5 %. Globální kontinentální průměr činí pouze 0,33 %.

A protože oceánský plankton mění na biomasu méně než 0,1 % dopadajícího záření, průměr za celou biosféru činí tedy ani ne 0,2 %. Takže ne každý 25., ale zhruba každý 500. foton je skutečně využit k růstu rostliny.

Právě to je důvod, proč biopaliva nejsou a v dohledné době rozhodně nebudou vhodnou alternativou k jiným používaným palivům – vyprodukují na plochu příliš málo energie. Proti tomu využití fotovoltaiky nabízí v praktických podmínkách účinnosti kolem 15 % a v blízké budoucnosti ještě o něco více. Tak proč ztrácet čas s fotosyntézou?

Co vlastně chceme

Odpověď je asi většině čtenářů jasná: fotosyntéza slouží k produkci energie připravené k uložení. Z fotovoltaiky sice dokážeme dnes již poměrně levně vyrábět elektřinu připravenou k okamžité spotřebě, ale problém jejího skladování je stále nevyřešený – přesněji řečeno, řešení jsou zatím pro řadu aplikací příliš drahá. Samozřejmě, proces by se musel trochu změnit; glukózy prostě tolik nepotřebujeme.

Frances Arnoldová před počátkem své vědecké dráhy (foto Frances Arnoldová/Nobelprize.org)
Frances Arnoldová před počátkem své vědecké dráhy (foto Frances Arnoldová/Nobelprize.org)

Dobrou zprávou je, že již dnes víme o oblastech, ve kterých bychom účinnost přírodního procesu mohli naopak poměrně jednoduše překonat. Jednou možností je využití nanočástic s extrémně velikým povrchem k zachycování dopadajícího světla. Plocha takového materiálu může být na mikroskopické úrovni podstatně větší než u listu. Na pohled to sice není vidět, ale dnes dokážeme navrhovat materiály, jejichž povrch představuje pro světlo velmi účinnou past.

Nevyřešené problémy ovšem stále převažují. Největší a nejdůležitější výzva spadá do odborného ranku Frances Arnoldové. Její specialitou je vývoj nových enzymů, tedy katalyzátorů chemických reakcí v těle. A přesně v nich spočívá hlavní nevýhoda laboratorních „umělých listů“. Je zapotřebí vyvinout levnější, odolnější a také účinnější materiály, aby se vůbec dalo uvažovat o jejich nasazení v praxi.

Otevřenou otázkou je i to, který způsob využití získané energie je vlastně pro naše potřeby nejlepší. Bude výhodnější pracovat na lepších katalyzátorech pro proces sluneční katalýzy vody, tedy její rozklad na kyslík a vodík, který by pak mohl sloužit jako zdroj energie? Nebo bude lepší udělat ještě o krok více a rovnou v rámci jednoho procesu vytvářet uhlovodíková paliva, tedy v podstatě ekvivalent ropy? Šlo by patrně o jednodušší molekuly s kratšími řetězci, které se snáze vytvářejí, ale také pak lépe zpracovávají a spalují.

První postup je přece jen jednodušší, a zdá se nejsnáze dosažitelný. Pokud to ovšem dovolí historie naší energetiky: současná infrastruktura totiž není na příchod vodíku připravena. „Dnes si s ním můžete maximálně nafouknout balónek,“ zavtipkoval před několika lety poněkud hořce Daniel Nocera, který se na slavném americkém MIT věnoval právě vývoji umělé fotosyntézy. Vyrobil tehdy v laboratoři „křemíkový list“ (křemíkovou oplatku s katalyzátorem), který za ideálních podmínek měl účinnosti kolem 10 %. Navíc s využitím ne úplně drahých materiálů.

Druhá generace

Což je vše slibné, ale systém trpěl celou řadou neduhů, které nešlo jednoduše vyřešit. A jak se Nocera brzy přesvědčil, sehnat na podobný program peníze je těžké. Jeho start-up se rychle přeorientoval na vývoj průtokových baterií, a pak se ho teprve podařilo prodat společnosti Lockheed Martin.

Nocera se zatím svého nápadu nevzdal a v Indii pracuje na další generaci systému. Ta propojuje upravenou verzi jeho křemíkového listu s geneticky upravenou verzí bakterie živící se vodíkem (jak vidno, i vědci uznávají, že evoluce je v mnoha ohledech dále než jejich poznání). Bakterie se tedy živí vodíkem vznikajícím z článku a díky genetické úpravě produkují nejen biomasu, ale také alkoholy. Účinnost byla znovu kolem deseti procent, a tak zhruba o řád vyšší než u běžných rostlin.

První laboratorní prototyp "umělého listu" připravený na MIT na přelomu první a druhé deskády 21. století (foto A.Nocera/MIT)
První laboratorní prototyp “umělého listu” připravený na MIT na přelomu první a druhé deskády 21. století (foto A.Nocera/MIT)

Nocera tentokrát zkouší jinou strategii a snaží se projekt prosadit v Indii, která má méně rozvinutou energetickou infrastrukturu. To znamená, že je do ní méně investováno a nabízí se příležitost vyzkoušet nezavedené postupy. V tomto případě by to mohla být výroba biopaliv ve speciálních tancích, například pro vozidla v odlehlejších koutech rozvojových zemí.

Ale na úspěch projektu bychom rozhodně neradili v tuto chvíli nikomu sázet. Všichni odborníci se vzácně shodují na tom, že v ceně nebude moci „umělá fotosyntéze“ fosilním palivům konkurovat. Není tedy příliš mnoho důvodů investovat ani do vývoje, ani do rozvoje. Arnoldová a Nocera jistě mohou přijít na spoustu zajímavých řešení, ale bez finanční injekce se dále nepohnou. A v takovém případě tedy ani 20 let nebude na přesvědčení zbytku světa stačit.

To neznamená, že výzkum je marný. Na výrobu paliva mohou být tyto systémy příliš drahé. Ovšem lepší katalyzátory mohou najít užití v oborech s výrazně větší marží, například v chemickém či farmaceutickém průmyslu. Kouzlo snu o „umělém listu“ spočívá v tom, že inspiruje. O mnoho více bychom od něj asi v blízké době čekat neměli.

Stejně jako ve většině vyspělých zemí i ve Švýcarsku rychle roste počet vozidel, která zcela, nebo alespoň z části pohání elektřina. Stejně tak se zvyšuje i podíl elektřiny, který se v této alpské zemi získává z obnovitelných zdrojů. Mladá švýcarská start-upová firma sun2wheel se rozhodla spojit oba tyto vývojové trendy a vyvinula nabíjecí stanici, která umožňuje použít baterie elektrických vozidel i jako úložiště energie.

Je dobře známou skutečností, že vozidla po většinu času nikam nejedou, nehýbají se, ale jsou někde zaparkovaná – doma v garáži, na parkovišti v místě zaměstnání, u supermarketu či leckde jinde. To samozřejmě neplatí jen pro auta na fosilní paliva, ale i pro elektromobily. Jejich baterie mají přitom mnohem větší úložnou kapacitu, než jaká je potřeba pro každodenní ježdění. Zakladatelé společnosti sun2wheel si tento fakt uvědomili a vytkli si za cíl využít potenciál této velké kapacity k domácímu nebo i firemnímu skladování energie.

Tento švýcarský start-up vyvinul nabíjecí stanici, pomocí které lze elektromobily nejen nabíjet, ale také z nich uloženou energii jednoduše získávat zpět. Elektřina vyrobená například s pomocí fotovoltaických panelů umístěných na střeše domu tak může být po určitou dobu uložena v elektromobilu parkujícím v garáži a následně znovu použita přímo v tomto domě. Takto uloženou solární energii lze použít například v noci, kdy fotovoltaické panely nepracují, k provozu důležitých elektrických spotřebičů, které musejí být neustále v činnosti, nebo třeba i k vytápění budovy tepelným čerpadlem.

Přednosti nabíjecího systému sun2wheel zde ale nekončí. Jeho dalším zajímavým rysem je jeho modularita. Lze jej totiž rozšířit o další baterie, které již třeba svou službu elektromobilitě splnily a nyní čekají na likvidaci. Systém lze v podstatě neustále rozšiřovat. Tuto možnost zvláště ocení například větší bytové domy nebo kancelářské budovy. Pro ně vyvinula sun2wheel speciální novou technologii V2G, aby rezidenti či firmy mohli vlastními silami vyrobenou solární energii co nejlépe využít a zvýšit tak svou energetickou soběstačnost. V komerčním kontextu skýtá tento ukládací systém ještě další výhodu: tzv. peak shaving. Díky němu je možné v jisté míře korigovat výkyvy v síti, resp. zátěžové špičky, a přispět tak k usměrňování ceny elektřiny.

Ke svému nabíjecímu systému vyvinula firma sun2wheel i vlastní software, který umožňuje optimalizovat všechny energetické toky mezi vozidlem, fotovoltaickým systémem, akumulátorem, budovou a veřejnou elektrickou sítí. Celý systém tak lze ovládat, jak je to dnes obvyklé, i prostřednictvím mobilu.

Ve Švýcarsku dosáhl v polovině letošního roku podíl elektromobilů a plug-in hybridů na veškerém tamním vozovém parku 23 procent. Je však třeba mít na paměti, že přesun k elektromobilitě má smysl pouze tehdy, když budou elektromobily využívat především energii získanou z obnovitelných zdrojů. A právě o to společnosti sun2wheel jde. Díky svému novému nabíjecímu/vybíjecímu řešení navíc rozšiřuje možnosti využití elektromobilních baterií, což v kontextu stále rostoucích nároků na energetickou infrastrukturu hraje a bude hrát nemalou roli.    

Společnost Highview Power plánuje ve Španělsku instalovat velkokapacitní systémy skladování energie v kapalném vzduchu (LAES). Měly by být schopné dodávat do sítě nezanedbatelné množství energie po dobu několika hodin.

Společnost uvedla, že připravuje projekty LAES o kapacitě až 2 GWh ve čtyřech španělských regionech: Asturie, Kantábrie, Kastilie a León a Kanárské ostrovy. Celkem se uvažuje až o sedmi projektech, přičemž každý z nich by měl mít jmenovitý výkon přibližně 50 MW a kapacitu 300 MWh.

Společnost uvedla, že zavedení 2 GWh bude představovat investice ve výši přibližně 1 miliardy USD. Pro práci na vývojovém plánu bylo vytvořeno konsorcium, jehož součástí je španělský vládní veřejný výzkumný orgán CIEMAT, který se zaměřuje na překlenutí rozdílu mezi technickým a vědeckým výzkumem a vývojem a širšími sociálními cíli. V konsorciu je také inženýrský partner TSK, s nímž společnost Highview v roce 2019 vytvořila společný podnik (JV), který bude spolupracovat na vývoji projektů v různých světových teritoriích.

Toto oznámení navazuje na zahájení výstavby prvního velkého komerčního projektu společnosti Highview Power, systému o výkonu 50 MW/250 MWh (tedy výkonu 50 MW a kapacitě 250 MWh) v severní Anglii, který by měl být uveden do provozu a komerčně využíván v roce 2022. Společnost Highview má také několik velkých projektů ve vývoji v USA a v říjnu 2020 vytvořila další společný podnik, tentokrát ve spolupráci s chilskou energetickou společností Enlasa za účelem rozvoje projektů v Chile a dalších latinskoamerických zemích.

Jak to funguje?

Snímek pilotního provozu na skladování energie firmy Highview Power v anglickém Slough. Systém nevyužívá stlačený, ale přímo zkapalněný vzduch
Snímek pilotního provozu na skladování energie firmy Highview Power v anglickém Slough. Systém nevyužívá stlačený, ale přímo zkapalněný vzduch. (kredit Highview Power)

Samotný koncept elektráren na stlačený vzduch je jednoduchý. V době přebytku elektrické energie, tedy třeba v noci či během větrných a slunečných dnů s malou spotřebou (např. o víkendech), se levná elektrická energie využije pro pohon kompresoru. Vícestupňovými kompresory je nasátý atmosférický vzduch stlačen a uložen pod tlakem (5–7,5 MPa) v podzemní jeskyni. Když poptávka převýší nabídku energie, vzduch se z jeskyně vypouští a přivádí se na turbínu, která vyrábí elektrickou energii.

V praxi ovšem fyzikální zákony princip komplikují. Hlavní komplikací je vznikající odpadní teplo, které vzniká při stlačování každého plynu a které je z hlediska skladování elektřiny jen ztracenou energií. Během stlačování se kvůli tomu vzduch ochlazuje, aby nedošlo buď k přehřátí „nádrže“, nebo stěn případného podzemního zásobníku.

Po vypuštění ze zásobníku se při expanzi naopak zchladí natolik, že se před vypuštěním do turbíny raději ohřívá spalováním fosilních paliv. Ohřev má několik důvodů: zvyšuje výkon turbíny a také brání zařízení před poškozením. Stlačený vzduchu se totiž při expanzi stlačený vzduch ochlazuje na tak nízké teploty, že to materiálům (tedy především kovům) příliš nesvědčí.

Společnost Highview Power, která nedávno získala od investorů celkem 70 milionů USD na podporu rozšíření svých aktivit, vyvinula vlastní systémovou technologii nazvanou CRYOBattery. Ta je založena na zkapalňování vzduchu při teplotě -196 °C, jeho skladování při nízkém tlaku a následném ohřevu pro pohon turbín a výrobu energie. Vzduch tedy není ani tak stlačován jako spíše chlazen.

Úložiště energie využívajícího stlačeného či zkapalněného vzduchu mohou poskytovat stejné tzv. systémové služby pro zajištění hladkého provozu přenosové soustavy, jaké dnes poskytují především fosilní zdroje. Tedy například může sloužit jako tzv. výkonová záloha. Může tedy naskočit v případě, že je v síti málo výkonu. A také může samozřejmě energii ukládat, pokud je to zapotřebí.

Společnost Highview tvrdí, že mezi výhody její technologie patří možnost zvýšovat kapacitu a tedy i zvýšit “kapacitu” systémů vybudováním větších zásobníků kapalného vzduchu. Z technologického hlediska je podle ní výhodou, že její systém využívá řadu osvědčených technických řešení (ba přímo celých jednotlivých segmentů zařízení) z jiných průmyslových odvětví.

Solární elektrárna Gemasolar ve španělské Andalusii, mezi městy Sevilla a Córdoba (foto Tony Hisgett)
Solární elektrárna Gemasolar ve španělské Andalusii, mezi městy Sevilla a Córdoba. Španělsko má pro fotovoltaiku vynikající podmínky a má tolik slunečných dní, že tu lze alespoň uvažovat o stavbě podobných “koncentrátorových elektráren”, které například v Česku vzhledem k častým mrakům vůbec nedávají smysl. (foto Tony Hisgett)

Španělský boj

Španělsko přijalo agresivní opatření v oblasti boje proti změně klimatu, včetně snížení emisí skleníkových plynů o 23 % do roku 2030, a jako člen Evropské unie je také vázáno společným cílem úplné dekarbonizace svého hospodářství do roku 2050.

Ke splnění těchto cílů se plánuje více než 50 GW nové kapacity obnovitelných zdrojů energie, včetně 20 GW větrné energie a 30 GW solární energie, zatímco jaderné a uhelné elektrárny mají být postupně vyřazeny. Španělsko si také v národní strategii pro skladování energie stanovilo cíl nasadit do roku 2030 20 GW skladování elektrické energie, což je největší cíl pro skladování energie na světě.

Přibližně 9 GW z toho by měla být elektrochemická zařízení, uvedl Luis Marquina, prezident španělské asociace pro skladování energie AEPIBAL, v nedávném rozhovoru pro nadcházející vydání našeho čtvrtletníku PV Tech Power (Vol. 27). Zbývá tedy přibližně 11 GW pro mechanické úložiště, vodík a další typy úložišť, přičemž důraz bude pravděpodobně kladen na dlouhodobá úložiště energie toho typu, která mohou umožnit velmi vysoký podíl obnovitelných zdrojů v národní elektrické síti.

Marquina, který je rovněž ředitelem pro institucionální záležitosti solární společnosti Gransolar Group, uvedl, že cíl v oblasti obnovitelných zdrojů energie je “naprosto dosažitelný”, neboť v posledních dvou letech Španělsko každoročně instalovalo přibližně 4 GW fotovoltaických elektráren. S rostoucím podílem obnovitelných zdrojů a s úbytkem fosilních paliv a jaderné energie poroste nebezpečí bezpečnosti, kvality a množství dodávek elektřiny. Skladování energie tyto problémy řeší, uvedl Marquina. Španělsko vzhledem k jeho dalekosáhlým plánům na budování kapacit pro skladování energie označil za trh, kde firmy z oboru “musí být”.

Společnost Highview Power prohlásila, že její projekty vytvoří ve Španělsku dobře placená pracovní místa jak v oblasti jejich provozu a údržby (O&M), tak i během výstavby, a že jsou rozvíjeny v oblastech, kde by technologie LAES pro dlouhodobé skladování byla strategicky nejvhodnější, a v oblastech, kde byly odstaveny elektrárny na fosilní paliva.

“Jak Španělsko bude připojovat více obnovitelných zdrojů energie do sítě, úložiště energie s dlouhou dobou trvání budou hrát stále větší roli při zajišťování stability sítě a pomáhat zemi dosáhnout cílů dekarbonizace stanovených v Národním plánu pro energetiku a klima,” uvedl generální ředitel a prezident společnosti Highview Power Javier Cavada. “Španělsko si jasně uvědomuje naléhavost řešení klimatických změn a my věříme, že CRYOBattery společnosti Highview Power budou důležitou součástí jeho strategie uhlíkové neutrality.”

Fotovoltaický potenciál Evropy (kredit Solargis)
Fotovoltaický potenciál Evropy. Roční průměrná výroba z instalovaného výkonu fotovoltaických panelů (kWh/kWp) (kredit Solargis)

Stará myšlenka
Nápad na využití “vzdušné baterie” není nijak nový. Experimentovalo se s ním už na konci 19. století. Ale byť byla energie tehdy velmi drahá a například cena elektřiny byla v přepočtu na kupní sílu nejméně o dva řády vyšší než dnes, skladování energie ve vzduchu se ale nakonec neukázalo být ve velkém měřítku ekonomicky výhodné. Z fyzikálního hlediska má potenciál, ale stávající technologie ho pro energetické potřeby nedokázala použít.

Protože má technologie zdravý fyzikální základ, řada odborníků si na ni vzpomněla, když se v posledních letech začalo mluvit znovu o možnostech „nových“ systémů skladování energie. Jejím ztělesněním se stala například auta „na vzduch“, tedy vozy s nádržemi a motory na stlačený vzduch.

Myšlenka to není sama o sobě zcela nesmyslná, podobné vozy mají stejný problém jako dnešní elektromobily: mají malý dojezd, sotva několik desítek kilometrů. Dnes je technologie na úrovni demonstračních kusů a laboratorních kusů například pro studentské projekty, včetně třeba studentských závodů. Nejlepší závodní speciály mají dojezd kolem deseti kilometrů na vzduchovou láhev s objemem deset litrů a jezdí rychlostí až kolem 50 kilometrů v hodině.

V edinburghském přístavu vyrostla v posledních letech velmi nezvyklá stavba. V podstatě jde o nekrytou výtahovou šachtu vysokou na čtyři patra. Ovšem místo výtahu v šachtě visí jen závaží: ohromné, 50tunové kovové závaží. Kabina není zapotřebí. Nejde ovšem o zařízení na dopravu nákladů, ale obří baterii.

Princip zařízení je starobylý. V podstatě jde o baterii, která ukládá energie ve formě potenciální energii v zemském gravitačním poli. Úplně stejně fungují vodní přečerpávací elektrárny. I v těch voda musí nejprve putovat vzhůru gravitačním polem Země, aby se pak ve chvíli potřeby prudce spustila dolů a roztočila připojenou turbínu. Přečerpávací jsou zatím nejúčinnějším a nejlevnějším způsobem skladování elektřiny ve velkém měřítku, ale jejich další rozvoj komplikuje především nedostatek vhodných lokalit. Nejde přitom jen o topografii, tedy vhodné výškové rozdíly, ale také problémy o to, že místní obyvatelé velmi často nechtějí vidět své hory „seříznuté“ a vybetonované.

„Gravitační baterie“ přesto představují zajímavou alternativu k chemickým bateriím, které dominují celosvětovému trhu se skladováním energie. Trhu, který v příštích letech a desetiletích nejspíše rapidně poroste ruku v ruce s nárůstem výkonů obnovitelných zdrojů energie. Ze slunečního svitu či větru vyrobená energie není dostupná vždy a poptávka po způsobech jejího ukládání tedy bude do budoucna nejspíše jen stoupat.

Zatímco na chemické baterie sází celá řada velkých korporací, několik menších společností (o jedné jsme již psali) pracuje na myšlence nového typu „gravitačních baterií“. Jedna z nich – start-up Gravitricity – je provozovatelem a majitelem zařízení v Edingburghu.

V malém

Jde zatím jen o malý demonstrátor principu s omezeným výkonem. Při spouštění závaží se z motorů „výtahu“ stávají elektrické generátory, které vysílají až 250 kilowattů energie zpět do sítě. Ovšem ten může dávat jen zhruba po dobu 11 sekund. Zařízení je schopné reagovat pružně, maximálního výkonu dosáhne s velmi malým zpožděním jednotek sekund (úplně přesné údaje k dispozici nejsou).

Koncept demonstračního zařízení společnost Gravitricity v Edinburghu (kredit Gravitricity)
Koncept demonstračního zařízení společnost Gravitricity v Edinburghu (kredit Gravitricity)

Přesto, že jde o opravdu skromný začátek, gravitační baterie má hned několik výrazných výhod. Některé jsou výhody jsou zjevné: lithium-iontové baterie například mají omezenou životnost na určitý počet nabíjecích cyklů. Ovšem komponenty gravitačních úložišť – navijáky, ocelové kabely a těžká závaží – vydrží dobře desítky let. Zavádění chemických baterií znamená také jistou ekologickou zátěž, nutnost vývoje zatím nevyzkoušených technologií recyklace a budování nové infrastruktury, výroba oceli (i její recyklace) jsou odzkoušené a velmi dobře vypilované technologie.

Gravitační baterie se tak v důsledku mohou z ekologického i finančního hlediska vyplatit, myslí si někteří. Oliver Schmidt z Imperial College London pro Gravitricity zpracoval analýzu, podle které po započtení všech nákladů – včetně výstavby, provozních nákladů a údržby – může být tento typ skladování levnější než lithium-iontové baterie. Schmidt odhaduje, že Gravitricity by mohla vyjít na 171 dolarů za každou megawatthodinu (MWh). Schmidtův výpočet celoživotních nákladů na MWh lithium-iontových baterií, 367 dolarů, tedy zhruba dvakrát vyšší. Průtokové baterie, slibná technologie pro síťová úložiště, vyjde vyjde podle Schmidta má celkové náklady 274 dolarů za MWh.

Nejdřív se musí postavit

V případě gravitačních technologií se jedná pouze o odhad, který nejdje doložit daty z praxe. Technologie je stále „neuvěřitelně nezralá“, uvedl Schmidt pro časopis Science. A zatímco ceny chemických baterií stále vytrvale klesají tempem několik procent za rok na jednotku uložené energie, vývojáři „gravitačních baterií“ (kterých je opravdu na světě jen pár), neudělaly v tomto ohledu zatím žádný pokrok.

Samozřejmě je tu ještě jeden další problém. Stejně jako všechny skladovací technologie i gravitační skladování má zatím „smrtící“ konkurenci. Na většině míst Země jsou nejlevnějším způsobem, jak se vyrovnat s výkyvy poptávky, elektrárny na zemní plyn, které mohou velmi pružně reagovat.

Gravitricity si údajně nedělá iluze o překážkách, které před firmou stojí. Nejde jen o to, že zatím se jedná o malý start-up se 14 zaměstnanci. I na samotné technologii je ještě co vyvíjet a zlepšovat, než bude opravdu použitelná, robustní a levná. V Gravitricity například měli údajně nečekaně velké problémy s kroucením ocelových lan, na kterých je závaží připevněno.

Pokud se firmě podaří překonat počáteční obtíže a zvládne projít start-upovým „údolím smrti“, plánuje do roku 2023 postavit plnohodnotnou elektrárnu. Ta už by měla mít těžší závaží, a téměř kilometr hlubokou šachtu, která by mohla produkovat až 4 MW špičkového výkonu.

Využití setrvačnosti je starý nápad, který se v posledních desetiletí podařilo významně vylepšit. Zdálo se dokonce možné, že by si mohly najít jako svébytný druh baterie i v energetice. To byla myšlenka za založením společnosti Beacon Power.

Velké naděje

Beacon Power vznikla v roce 1997 jako dceřinná technologické společnosti SatCon. V roce 2000 vstoupila na burzu. Tehdy se ještě profilovala jako firma, která měla poskytovat energetickou zálohu pro různé podniky či provozy. Setrvačníků, které by sloužila k vyrovnání dodávek elektrického proudu například pro citlivá zařízení, jimž vadí krátkodobé výpadky či jen výkyvy frekvence.

Firma využívala možností, které skýtaly technologické pokroky posledních desetiletí 20. století. Jejím produktem jsou vakuové komory, ve kterých velmi rychle točí setrvačníky z uhlíkových vláken na speciálních ložišcích s velmi nízkým odporem. Setrvačníky se mohou točit frekvencí několika řádově desítek tisíc otáček za minutu.

Postupně ale změnila zaměření. Začala se zaměřovat na regulaci frekvence a další síťové služby. Nemohla sloužit jako dlouhodobá záloha, na to setrvačníky nemají dostatečnou kapacitu, ale zato mohou velmi rychle reagovat na výkyvy v síti, krátkodobě je pomoci regulovat, než naskočí (nebo se odstaví) výkonnější zdroje s delší reakční dobou.

Beacon Power nakonec mohla své vize realizovat díky pomoci americké vlády. Získala grant ze stejného programu jako výrobce solárních článku Solyndra, která pak velmi neslavně zkrachovala (a tím dosti pošramotila pověst programu, který ale ve skutečnosti jako celek nebyl vůbec neúspěšný).

Průřez systémem Beacon Power
Průřez systémem Beacon Power. Válec z uhlíkových vláken s ocelovým jádrem vyplňuje prakticky celý objem zařízení. (foto Beacon Power)

Vzestup a pád

V roce 2009 společnost získala 43 milionů grantových dolarů a začala ve státě New Yorkstavět velkou „farmu“ se setrvačníky o celkovém maximálním výkonu 20 MW. Stavba se zpožďovala, a když byla hotova, americký trh s elektřinou byl jiný. Krize výrazně snížila poptávku po elektřině, ceny šly dolů, klesla cena paliv (v USA hlavně zemního plynu).

Na trh také přišly nové plynové turbíny s kombinovaným cyklem, které byly schopny reagovat výrazně rychleji na požadavky po změně výkonu. Ceny regulace frekvece a dalších tzv. podpůrných služeb v USA prudce klesly. Když firma konečně provoz spustila, byla v podstatě na desetině toho, co firma předpokládala ve svém finančím plánu.

Beacon Power měla potíže s realizací svého provozu, který se proti plánu výrazně prodražil, pád cen za její produkty jí pak podrazil nohy úplně. Firma mezi lety 2004 a 2011 prodělal celkem 174 milionů dolarů a v říjnu 2011 vyhlásila bankrot. Zdálo se, že další Solyndra je na spadnutí. Beacon Power Půjčka byla sice podstatně menší než na panely (cca 43 milionů proti cca 540 milionům), ale také šlo o politicky stejně „výbušný“ případ.

Nakonec však nebylo – alespoň pro politiky – tak zle. Firmu za několik měsíců koupila soukromá investiční společnost Rockland Capital, která se zavázala splatit 70 % dlužné částky. Dokonce poskytla kapitál na stavbu další farmy o stejném výkonu v Pennsylvánii.

Ovšem setrvačníky jsou stále lepší na papíře než v praxi, jak zjistil i Rockland Capital. Ceny za regulace frekvence zůstaly tak nízko jako po krizi. V roce 2018 se i Rocklad setrvačníkových farem zbavil a prodal je společnosti Convergent Energy + Power, a pak po dalších akvizicích skončily v portfoliu fondu Energy Capital Partners.

V provozu jsou podle posledních informací stále obě farmy, každý o maximálním výkonu 20 MW (ten ovšem mohou poskytovat jen po dobu několika minut). O dalším rozvoji se nemluví, firma podle všeho v podstatě pokračuje v provozu v podstatě… inu, setrvačností.

Pokud dojde k masovému přechodu na elektromobily, budeme potřebovat výrazně více zdrojů elektřiny. Zvládne si všem naše rozvodní síť s takovými toky poradit? Bližší pohled nám ukáže, že v principu ano, bez jistých změn to ovšem nepůjde.

V rozvaze musíme uvažovat nejen o celkovém množství energie, které by k nabíjení bylo zapotřebí, ale především o tom, jak budou spotřeba a výroba rozloženy v čase. Při dimenzování sítí nejde jen o celkovou spotřebu, ale i o výkonové špičky. A ty v případě masové rozvoje elektromobility mohou potenciálně být velmi výrazné.

Všichni najednou!

Představme si to na záměrně velmi zjednodušeném výpočtu. Průměrný domácí automobil jezdí pouze jednou týdně. Pokud by byly osobní automobily všechny elektrické a každý sedmý majitel chtěl svůj vůz po příjezdu domů nabít, náhle by se poptávka během večera zcela drasticky zvýšila.

Když měli počítat, že by uživatelé v průměru nabíjeli nízkým výkonem 5 kW, celkový odběr by se zvýšil o 4 GW. To je zhruba polovina průměrné spotřeby celé ČR ve špičce. Kdybychom měli spoléhat jen na tradiční řešení, možná elektromobilová špička by byla ohromná a velmi drahá komplikace pro všechny spotřebitele. Zřejmě by vyžadovalo by stavbu nových zdrojů, které by ji musely pokrýt – a zbytek dne by stály a spotřebovávaly by peníze.

Nabízí se ovšem řešení chytřejší. Masový rozvoj elektromobility je zvládnutelný s rozšiřováním chytrých prvků, které umožňuji harmonizaci poptávky a výroby. Například systémů, které dokáží dobře a spolehlivě sladit poptávku po nabíjení v danou chvíli s možnostmi sítě v reálném čase.

Řešení jistě existují. Například použití menších baterií. Například v garáži v budově ČSOB v pražských Radlicích společnost Siemens nainstalovala šest AC wallboxů a dvě 50kW rychlonabíjecí stanice Siemens. Systém je nastaven tak, že v jeden okamžik lze nabíjet současně osm vozů výkonem 22 kW a dva výkonem 50 kW. Všechny nabíječky jsou připojeny k řídícímu systému, který zajišťuje management energií budovy, který může pružně reagovat na různé situace. Pokud například hrozí nedostatek příkonu, nabíječky, které jsou tak důležité jako například klimatizace, omezí výkon či v případě wallboxů přestanou nabíjet úplně.

Dobíjecí stanice v budově ČSOB na pražské Radlické (foto: Siemens)
Dobíjecí stanice v budově ČSOB na pražské Radlické (foto: Siemens)

Řada firem ve spolupráci také vyvíjí systémy umožňující užší spolupráci mezi baterií a sítí, takzvané V2G (vehicle-to-grid, tedy „vůz-síť). Díky by mělo být možné baterii vozu využívat například pro vyrovnání výkonu v síti, samozřejmě za úhradu pro majitele vozu, jehož baterie se takto ve zvýšené míře opotřebovává.

Co teď?

Ale tato řešení nemusí být dostupná hned zítra. Je čas se připravit. Budeme mít možnost si řešení přechodu k elektrickému pohonu vyzkoušet v malém. Modelování ukazuje, že i při poměrně malé úrovni elektrifikace – když elektromobily budou řádově jednotky procent všech vozů – mohou vznikat v lokálních sítích k obtížím (samozřejmě závisí na parametrech lokální sítě). Problémem může být například přetěžování některých transformátorů, které snižuje jejich životnost.

Na úrovni místní sítě ovšem může způsobovat obtíže, které bude nutné řešit. Bezpochyby se najdou slabá místa, která bude nutné posílit. V případě stavby nových dobíjecích stanic může být například nutné vyměnit trafostanici. Jinde možná bude kapacita dostatečná; například u většiny obchodních center by dobudování nutné dobíjecí infrastruktury nemuselo ve většina případů vyžadovat velký zásah.

Tyto malé obtíže a bolesti ovšem mají svou výhodu. Nepředstavují velké riziko z hlediska provozu celé sítě, přitom ovšem umožní vyzkoušet řešení, která pak lze použít ve větším měřítku. Samozřejmě, distributoři a další se musí postarat, aby se to nedělo na úkor zákazníků.

Nejlepším řešením podle odborníků v tuto chvíli dává největší smysl připravovat řešení a kroky, kterých „nebude třeba litovat“. Jedním z nich je například příprava sítě pro rychlý sběr dat v co nejkratším časem a vytváření přesnějších modelů jak sítě, tak modelů předpovídajících vývoj spotřeby, či například výroby (v případě obnovitelných zdrojů). Ať už se vývoj v budoucnosti vydá jakýmkoliv z mnoha možných směrů, s pružněji reagujícími a řiditelnými sítěmi se po ní půjde všem lépe.

Načíst další