Řada automobilek se v současnosti velmi usilovně snaží navrhnout takový elektromotor, který by ke svému fungování nepotřeboval žádný permanentní magnet. Děje se tak částečně proto, že k výrobě magnetů jsou potřeba vzácné kovy a jejich těžba způsobuje ekologické škody. Z části je to ale také proto, že velká část této těžby – zhruba 90 % – se uskutečňuje v Číně, a v západním světě dnes převládá snaha ekonomickou závislost na této východoasijské zemi co nejvíce omezit.

Většina elektromotorů, které byly dosud vyvinuty, je založena na otáčejících se zařízeních, která kontaktně přenášejí elektřinu na měděné cívky v rotoru. V novém typu elektromotoru, s nímž nedávno přišla německá firma Mahle, však žádná kontaktní místa nejsou. Prostřednictvím cívky se totiž indukuje proud přímo v přijímací elektrodě uvnitř rotoru, a ten pak napájí měděná vinutí, čímž vytváří potřebné elektromagnetické pole.

„K přenosu elektřiny v tomto motoru nejsou třeba žádné kontakty, takže nemůže dojít k abrazi, zanášení prachem nebo jinému mechanickému opotřebení,“ uvedl o novince Martin Berger, který ve společnosti Mahle vede výzkum. „Výhodou je také to, že pokud je nutná oprava rotoru, není nijak obtížné jej celý vyměnit,“ doplnil.

Výroba tohoto elektromotoru bez použití vzácných kovů by měla být i levnější. Jeho konstrukce navíc umožňuje i následné ladění a změnu parametrů rotoru. To znamená, že celkovou účinnost motoru půjde velmi dobře optimalizovat podle jeho konkrétní aplikace – od využití v subkompaktních automobilech až po malé nákladní automobily. Podle Martina Bergera se motor naopak příliš nehodí pro ultrakompaktní vozidla, jako jsou třeba elektrokola, nebo pro velká nákladní vozidla, která obvykle pracují při stálém zatížení. „Velmi rychlá nebo těžká vozidla potřebují převodovku, ale ve většině případů použití, například v osobních automobilech, stačí jeden převodový stupeň,“ vysvětluje Berger.

Jak během testů vývojáři Mahle zjistili, účinnost tohoto nového elektromotoru je mimořádná: dosahuje až 95 %. Takovéto hodnoty se dosud dařilo dosahovat pouze závodními vozy Formule E. Testy ukázaly také to, že dobré účinnosti lze dosáhnout při vysokých i nízkých točivých momentech, což by ve výsledku mělo přispět k větší výdrži baterie vozidla.

Výroba tohoto elektromotoru by podle prohlášení Mahle měla být zahájena přibližně za dva a půl roku, což dává tušit, že společnost Mahle již navázala spolupráci s některou z automobilek zabývajících se výrobou elektromobilů.

Ty nejlepší solární články se na Zemi prakticky nevyužívají. Změnit to bude těžké. Konkurence je prostě příliš levná. Vývojáři to ovšem chtějí změnit.

Přílet dalších robotických průzkumníků k Marsu sice obrátily zraky vesmírných fanoušků k “Rudé planetě”, ještě během letošního roku se na sebe chce strhnout ambiciózní mise NASA s názvem Lucy. Sonda Lucy, která odstartuje 16. října na více než desetiletou misi, míří k Trojanům, asteroidům, které se pohybují v oblasti oběžné dráhy Jupitera.

Většina předchozích sond do vzdálenějších části sluneční soustavy (například Voyager a New Horizons) se spoléhala na drahé radioizotopové termoelektrické generátory. Lucy místo toho nese dvojici solárních panelů. Rozvíjejí se jako obří vějíře, každý s průměrem zhruba šesti metrů.

“Extrémní energetické požadavky” ve vesmíru jsou “v podstatě hlavním důvodem, proč jsou solární panely tak veliké a impozantní,” říká Katie Oakmanová, vedoucí oddělení struktur a mechanismů kosmické lodi Lucy. Což ovšem vyžadovalo zaměřit výzkum poněkud netradičním směrem. Zatímco na Zemi jsou hnacím motorem přechodu k zelené energii levné křemíkové články, vesmírní “solárníci” se musí spoléhat na jiné typy panelů.

Sondy Lucy (foto NASA)
Sondy Lucy (foto NASA)

Musí se jinak

Ve vesmíru hrozí ještě jedno nebezpečí: ionizující záření. Solární panely na oběžné dráze Země musí čelit ničivému vlivu záření Van Allenových pásů, solární panely na jiných místech naší soustavy zase ohrožují nabité částice ve slunečním větru. Obojí časem snižuje účinnost článků. Článku, který stráví 15 let na geosynchronní oběžné dráze Země (cca 36 tisíc kilometrů nad povrchem), má účinnost pouze zhruba 80 % původní hodnoty.

První družice z 50. a 60. let 20. století používaly křemíkové fotovoltaické články. Konstruktéři se však brzy začali zabývat takzvanými vícepřechodovými či multispektrálními články. Ty se vyrábí z vrstev několika materiálů, které každá pohlcuje jinou vlnovou délku světla. Tyto články jsou účinnější, v náročných vesmírných podmínkách odolnější a lehčí.

“Vesmírný průmysl používá vícepřechodové solární články již delší dobu, a to právě z těchto důvodů,” řekl pro IEEE Spectrum Ryan France, vědec z Národní laboratoře pro obnovitelnou energii (NREL) v Golden v Coloradu u Denveru. NREL byla v minulých desetiletích průkopníkem v oblasti vícepřechodových článků a v nedávné době tamní vědci posunuli účinnost vícepřechodových článků k symbolickému milníku 50procetní účinnosti. 

Návrat na zem

Na Zemi však vícepřechodové články  narážejí na ekonomickou překážku: nízká cena křemíkových fotovoltaických článků a jejich drtivá převaha na trhu dohromady činí z komercializace vícepřechodových článků obtížný úkol. Ceny křemíkových článků klesly od roku 1980 šedesátkrát a pokles se jen stěží zastaví.

Zkouška solární panelů sundy Lucy (foto NASA)
Zkouška solární panelů sundy Lucy (foto NASA)

Vícepřechodové články se zatím používají převážně v koncentrované solární technologii, která využívá zrcadla nebo čočky k soustředění a zesílení slunečního světla na solární panel. Tím se dosahuje působivých hodnot účinnosti, ale v praxi se zatím nedaří levnému křemíku konkurovat.

Výzkumníci z NREL se však nyní zaměřili na jiné aspekty, než je 50procentní účinnost, a snaží se především snížit cenu vícepřechodových článků. “Čím nižší budou náklady,” říká France, “tím větší bude potenciální odbyt.” Chtějí připravit půdu pro nové aplikace tohoto typu článků, i když zatím není jasné, o jaké aplikace by se mohlo jednat.

Ovšem levnější solární články nepochybně budou přínosem opět pro vesmírné aplikace. A Oakman si myslí, že rozložitelné solární panely, jaké má Lucy, najdou své uplatnění i případných delších “výletech” lidstva mimo naši planetů. Zejména do oblasti kolem Jupiteru, kde jsou teploty a množství světla výrazně nižší než v oblasti oběžné dráhy Země. “Pokud chceme i nadále vysílat kosmické lodě do vnějších částí sluneční soustavy, pak se podle mého názoru pro využití tohoto typu konstrukce najde celá řada možností.”

Využití setrvačnosti je starý nápad, který se v posledních desetiletí podařilo významně vylepšit. Zdálo se dokonce možné, že by si mohly najít jako svébytný druh baterie i v energetice. To byla myšlenka za založením společnosti Beacon Power.

Velké naděje

Beacon Power vznikla v roce 1997 jako dceřinná technologické společnosti SatCon. V roce 2000 vstoupila na burzu. Tehdy se ještě profilovala jako firma, která měla poskytovat energetickou zálohu pro různé podniky či provozy. Setrvačníků, které by sloužila k vyrovnání dodávek elektrického proudu například pro citlivá zařízení, jimž vadí krátkodobé výpadky či jen výkyvy frekvence.

Firma využívala možností, které skýtaly technologické pokroky posledních desetiletí 20. století. Jejím produktem jsou vakuové komory, ve kterých velmi rychle točí setrvačníky z uhlíkových vláken na speciálních ložišcích s velmi nízkým odporem. Setrvačníky se mohou točit frekvencí několika řádově desítek tisíc otáček za minutu.

Postupně ale změnila zaměření. Začala se zaměřovat na regulaci frekvence a další síťové služby. Nemohla sloužit jako dlouhodobá záloha, na to setrvačníky nemají dostatečnou kapacitu, ale zato mohou velmi rychle reagovat na výkyvy v síti, krátkodobě je pomoci regulovat, než naskočí (nebo se odstaví) výkonnější zdroje s delší reakční dobou.

Beacon Power nakonec mohla své vize realizovat díky pomoci americké vlády. Získala grant ze stejného programu jako výrobce solárních článku Solyndra, která pak velmi neslavně zkrachovala (a tím dosti pošramotila pověst programu, který ale ve skutečnosti jako celek nebyl vůbec neúspěšný).

Průřez systémem Beacon Power
Průřez systémem Beacon Power. Válec z uhlíkových vláken s ocelovým jádrem vyplňuje prakticky celý objem zařízení. (foto Beacon Power)

Vzestup a pád

V roce 2009 společnost získala 43 milionů grantových dolarů a začala ve státě New Yorkstavět velkou „farmu“ se setrvačníky o celkovém maximálním výkonu 20 MW. Stavba se zpožďovala, a když byla hotova, americký trh s elektřinou byl jiný. Krize výrazně snížila poptávku po elektřině, ceny šly dolů, klesla cena paliv (v USA hlavně zemního plynu).

Na trh také přišly nové plynové turbíny s kombinovaným cyklem, které byly schopny reagovat výrazně rychleji na požadavky po změně výkonu. Ceny regulace frekvece a dalších tzv. podpůrných služeb v USA prudce klesly. Když firma konečně provoz spustila, byla v podstatě na desetině toho, co firma předpokládala ve svém finančím plánu.

Beacon Power měla potíže s realizací svého provozu, který se proti plánu výrazně prodražil, pád cen za její produkty jí pak podrazil nohy úplně. Firma mezi lety 2004 a 2011 prodělal celkem 174 milionů dolarů a v říjnu 2011 vyhlásila bankrot. Zdálo se, že další Solyndra je na spadnutí. Beacon Power Půjčka byla sice podstatně menší než na panely (cca 43 milionů proti cca 540 milionům), ale také šlo o politicky stejně „výbušný“ případ.

Nakonec však nebylo – alespoň pro politiky – tak zle. Firmu za několik měsíců koupila soukromá investiční společnost Rockland Capital, která se zavázala splatit 70 % dlužné částky. Dokonce poskytla kapitál na stavbu další farmy o stejném výkonu v Pennsylvánii.

Ovšem setrvačníky jsou stále lepší na papíře než v praxi, jak zjistil i Rockland Capital. Ceny za regulace frekvence zůstaly tak nízko jako po krizi. V roce 2018 se i Rocklad setrvačníkových farem zbavil a prodal je společnosti Convergent Energy + Power, a pak po dalších akvizicích skončily v portfoliu fondu Energy Capital Partners.

V provozu jsou podle posledních informací stále obě farmy, každý o maximálním výkonu 20 MW (ten ovšem mohou poskytovat jen po dobu několika minut). O dalším rozvoji se nemluví, firma podle všeho v podstatě pokračuje v provozu v podstatě… inu, setrvačností.

Nejvěhlasnějším věrozvěstem revoluce ve skladování elektřiny je Američan John Goodenough. Možná si ho pamatujete i ze stránek našeho časopisu; v roce 2019 získal Nobelovu cenu za svůj podíl na vývoji lithium-iontových akumulátorů. Ty už jednu revoluci v oboru akumulace energie přinesly, protože umožnily rozvoj přenosné elektroniky. Bez nich bychom těžko mohli po kapsách nosit výkonné počítače, kterým jsme si zvykli říkat telefony, a automobilka Tesla by rozhodně nemohla vyrábět sportovní či luxusní vozy, leda tak – možná – vysokozdvižné vozíky.

Pro Johna Goodenougha to ovšem není dost dobré. Zhruba od roku 2015 pracuje s kolegy na vývoji nového typu akumulátoru, pro který se vžil výraz „skleněná baterie“ (představili ho v této práci). Jednoduše proto, že článek by neměl využívat kapalného elektrolytu, ale elektrolytu ze skla obohaceného o malou příměs dalších materiálů, v tomto případě některých kovů.

Pevný skleněný elektrolyt by měl přinášet celou řadu výhod. Měl by být levný, nehořlavý a samozřejmě také výkonnější. Články by podle autorů nápadu mohly mít zhruba pěti- až osminásobně vyšší kapacitu než dnešní lithiové.To znamená, že by skutečně neměl být problém sestrojit elektromobil s řádově tisícikilometrovým dojezdem (nebo alespoň auto s výrazně levnější baterií). Navíc by design měl umožňovat extrémně rychlé nabíjení, o řád rychlejší než u dnešních lithiových článků.

Tým kolem Johna Goodenougha a Marie Heleny Bragové pracuje na tomto tématu roky, zatím vydal devět vědeckých prací v různých časopisech a nechal si zaregistrovat několik patentů. V roce 2019 se dokonce objevila informace, že největší energetická společnost provincie Québec – Hydro-Québec – chce investovat do komercializace celého konceptu. Vše se zdá být na dobré cestě, ale pokud byste měli možnost si proti novému akumulátoru vsadit, silně bychom vám to doporučili.

Zkoušení laboratorních článků (foto: UoT)
Zkoušení laboratorních článků (foto: UoT)

Problém

Pokud byste Goodenoughův nový vynález hledali na internetu, najdete v podstatě pouze pozitivní PR: řadu rozhovorů s autory, víceméně nadšené články v populárně-naučných časopisech, odborná komunita se však o „skleněných baterkách“ téměř nezmiňuje. Hlasů se ozvalo jen pár a nebyly zdaleka tak pochvalné, jak byste si mohli myslet.

„Kdyby to publikoval kdokoli jiný než Goodenough, neměl bych pro tu práci příliš uctivé označení,“ nechal se třeba slyšet Daniel Staingart, materiálový inženýr z Princetonu. Jeho kritika nápadu je sice uctivá – je si plně vědom Goodenoughových zásluh v oboru –, ale také nelítostná a mnohostranná. Pro laika je nejspíše nejlépe pochopitelná jeho výtka, že „skleněný“ akumulátor porušuje první termodynamický zákon, tedy zákon o zachování energie. Ten říká, že množství energie je v rámci jednoho systému konstantní.

Podle názoru Staingarta jde prostě o chybu při snaze pochopit, co se v akumulátoru děje. To totiž není úplně jednoduché zjistit – i experimentální článek je poměrně složitý, probíhá v něm celá řada chemických procesů. Výzkum také probíhá na velmi malých článcích s malými výkony, u kterých i poměrně malá chyba měření či jiná chyba v experimentu můžou naměřené výsledky snadno zkreslit.

Autoři „skleněné baterie“ ale svá měření interpretují tak, že akumulátor kvůli exotickým jevům na rozhraní obou elektrod a dalším faktorům uvolňuje energii, aniž dochází k chemické přeměně materiálů v ní obsažených. Přitom základ lithiových a dalších chemických akumulátorů spočívá právě v tom, že skladování elektřiny je v nich spojeno s nějakou chemickou reakcí. Například u lithium-iontových akumulátorů dochází při vybíjení ke sloučení lithiových iontů a materiálu katody (dodejme, že při nabíjení se ionty uvolňují a putují do anody, kde se „uhnízdí“ v materiálu, aniž by s ním chemicky reagovaly). Steingart napsal o tématu dlouhý blogový příspěvek, ve kterém si pomáhá příměrem: Goodenough a spol. podle něj „tvrdí, že palivo vlastně neustále reaguje a přitom se nespotřebovává“. Skleněný akumulátor je podle něj jakési perpetuum mobile.

Není to jediná „zvláštnost“ nového akumulátoru. Autoři objevu dále uvádějí, že podle jejich názoru v tomto zařízení dochází také ke spontánnímu dobíjení článků. Jak konkrétně, to pouze odhadují, ale akumulátor by se tak choval přesně opačně než všechny dnešní články: ty se v menší či větší míře spontánně pouze vybíjejí.

Testování nových typů článků (fot DoE)
Testování nových typů článků (fot DoE)

Stojí si za svým

Steingart je jedním z mála odborníků na tomto složitém poli, který se revolučnímu typu akumulátoru věnoval, není ovšem jediný. V odborném tisku se objevil článek týmu z univerzity v rakouském Grazu, který se pokoušel přesně napodobit práci týmu kolem Johna Goodenougha.

Na základě svých pokusů a analýz dospěl k závěru, že ve skutečnosti probíhají ve „skleněné baterii“ jiné procesy, než se autoři domnívají. Nemělo by se tedy jednat o převratný vynález, ale chybu, k jakým ve vědě čas od času dochází. V podobných případech se mluví o tzv. patologické vědě. To je terminus technicus, který označuje situaci, kdy se vědci nevědomky odchýlí od vědecké metody a nedokážou tak objektivně posoudit slabiny své práce.

Veřejně své pochybnosti v několika příspěvcích vyjádřil také například elektrochemik Matt Lacey (poslední najdete zde). Ani toho opakované publikace o vlastnost „skleněné baterie“ nijak nepřesvědčily a důkazy o tom, že funguje, považuje za velmi slabé.

Proč se o tom příliš nemluví? Zřejmě v tom hraje roli několik faktorů. Za prvé samozřejmě proto, že samotný výzkum není triviální. Chyby se v takových případech stávají, to není nic neobvyklého. Goodenough je také 98letá legenda oboru a kritizovat jeho současnou práci (i s ohledem na jeho věk) se nepochybně může zdát neslušné a bezohledné. Ve výzkumu akumulátorů je dnes tolik vzrušujících témat, tak proč se pouštět zrovna do oblasti, kde hrozí takový zbytečný konflikt…

Dalším faktorem je to, že vědci ve většině případů nedostávají „body“ za vyvrácení cizích omylů. Ověřování a případné vyvracení cizích hypotéz je sice nezbytnou součástí vědeckého pokroku, ve skutečnosti ovšem nebývá tato snaha příliš odměňována. Vědecké časopisy i grantové agentury si mnohem více cení pozitivních výsledků než těch negativních. Takových prací, jakou udělal tým z Grazu, vychází podle mnohých odborníků příliš málo.

Z hlediska vědy jako celku je to velká škoda, protože některé omyly pak přetrvávají zbytečně dlouho. V některých oborech (např. biochemii) jde podle řady názorů odborníků z oboru o relativně vážný problém. Jak je to v případě výzkumu akumulátorů, to je těžké posoudit. Ale asi lze bezpečně uvést, že ne každá „převratná inovace“ splní, co slibuje, byť má třeba dobrý původ.

V předchozí části našeho textu jsme popsali poměrně málou známou historii jaderných zdrojů pro vesmírné projekty zhruba do konce studené války. V této části se budeme věnovat současným snahám, kterým dominuje tentokrát výzkum pro americkou agenturu NASA.

Americká naděje

Vzhledem ke známým problémům Ruska a celkové relativní slabosti jeho ekonomiky asi není překvapení, že v zemi konstruktérů Sputniku jaderný kosmický program de facto skončil. I přesto, že ruská kosmická agentura Roskomos čas od času vyšle do světa zprávu, že se chystá pokračování vývoje jádra pro použití v kosmu, reálných nových výsledků jsme se od něj od 90. let nedočkali.

To dlouho platilo i pro tradičního rivala Ruska v kosmickém výzkumu, Spojených státech. Američané vyslali do vesmíru pouze jeden jediný pokusný reaktor, který fungoval zhruba měsíc a půl. USA měly i program vývoje jaderných kosmických pohonů, který v 60. a částečně i 70. letech spolykal 100 milion dolarů z veřejného rozpočtu, ale neměl žádný praktický výsledek.

NASA tak měla s jadernou technologií špatné zkušenosti a nové projekty v tomto oboru neměly prakticky žádnou šanci na úspěch. „Měl jsem chuť odejít jinam, i když jsem tomuto oboru věnoval celý svůj život,“ vzpomínal v minulém roce na nedávnou minulost jaderný fyzik David Poston z laboratoří v Los Alamos.

Práce na přípravě prototypu reaktoru Kilowpower o výkonu 10 kW (kredit NASA)
Práce na přípravě prototypu reaktoru Kilowpower o výkonu 10 kW (kredit NASA)

Právě jeho týmu se nakonec podařilo odpor NASA ovšem zlomit – a to především spořivostí. Poston a spol. si vybrali u kolegů z laboratoře a jiných pracovišť všechny „protislužby“, na které si vzpomněli, nadělali spoustu nových podobných „dluhů“. Díky tomu se jim s téměř zanedbatelnými náklady (řádově za miliony korun) podařilo sestavit experiment, ve kterém v roce 2012 ukázali hlavní součástky jaderného reaktoru nové generace.

Na základě tohoto výsledku pak dostali již zajímavějších 25 milionů dolarů (tj. půl miliardy korun), postavili první americký reaktor pro využití ve vesmíru za posledních několik desetiletí. Doslova tak zvzkřísili z mrtvých americký jaderný kosmický program.

Díky, mistře Stirlingu

Jejich zařízení nese název Kilopower. Tak jako starší sovětské kosmické reaktory je konstrukčně velmi jednoduché, ale v řadě důležitých ohledů však u něho došlo k doslova revolučním vylepšením. Klíčovým rozdílem je výrazně vyšší účinnost při výrobě elektřiny, která se pohybuje o řád výše než v případě předchozích sovětských reaktorů: okolo 20 procent.

Hlavní roli v tom hraje nový systém přeměny tepla v elektřinu. Teplo z reaktoru vyvádí tepelná trubice, jež ho předává do systému na výrobu elektřiny, který nikdy předtím v reaktoru nebyl využitý, do tzv. Stirlingova motoru.

To je velmi jednoduchý uzavřený motor, který si s okolím vyměňuje pouze teplo. Píst se v něm pohybuje díky změnám teploty plynu, který je pevně uzavřen v motoru. Stirlingův motor má různé podoby, ale můžete si ho představit jako pístový motor, který má „teplou“ a „studenou“ část. Rozdíly teplot způsobují změnu objemu plynu v motoru, to rozpohybuje píst, a tak se teplo mění na mechanický pohyb.

Ukázka Stirlingova motoru v chodu (kredit Paul U. Ehmer, CC 3.0)
Ukázka Stirlingova motoru v chodu (kredit Paul U. Ehmer)

Stirlingovy stroje se z různých důvodů nedočkaly takového rozšíření jako parní stroje, které vznikly zhruba ve stejné době. Ovšem na rozdíl od parních strojů zájem o jejich využití přetrvává dodnes. Teoreticky může být jejich účinnost poměrně vysoká, navíc se mohou využít i tam, kde se jiné motory s otevřeným cyklem využít nedají, například právě ve vesmíru. Nová generace Stirlingových motorů nevznikala primárně pro Kilopower, ten – a samozřejmě také jiné kosmické jaderné reaktory – z tohoto pokroku ovšem může velmi výrazně profitovat.

Přestože se v poslední době zdá, že první zkoušky proběhnou s vysoce obohaceným palivem, původní návrhy počítaly s nízko i vysoce obohaceným palivem (samozřejmě reaktor musí být konstruovaný v každém případě trochu jinak, ale oba návrhy jsou připravené). Využití nízko obohaceného paliva zvýší hmotnost, na druhou stranu například s takovým palivem mohou nakládat i běžné komerční subjekty a nepodléhá stejné kontrole jako „zbraňový“ uran, který využívá verze s obohaceným palivem.

Reaktor má snadno regulovatelný výkon, je pasivně bezpečný (tedy měl by se chladit bez potřeby dodávek energie) a jeho výkon se „přirozeně“ reguluje podle odběru. Reaktory je možné stavět v různých velikostech, ve hře jsou varianty s výkonem od 1 do 10 kW.

V reálném provozu by měl dodávat stálý výkon více než 10 let, prakticky bez ohledu na okolní podmínky. Největší problém pro něj představuje asi zvýšená teplota. Systém se musí zbavovat přebytečného tepla, což se děje s pomocí radiátoru, který na přímém slunečním záření samozřejmě funguje hůře než ve stínu. V oblastech blízko Slunce je takový systém nepraktický, v extrémních případech by mohl být zcela nepoužitelný.

Konec druhé, závěrečné části textu. První část najdete na této stránce.

Až se jednou lidé vydají na Mars, co bude zdrojem energie pro jejich přístroje a zařízení? Nemluvíme teď o samotné raketě, nýbrž přehršli elektronického i mechanického vybavení, které s sebou ponese.

První kandidátem by se mohla zdát, že nejvhodnějším kandidátem je energie Slunce. Fotovoltaické panely se ve výzkumu vesmíru používají běžně a v řadě aplikací se velmi osvědčily. Samy o sobě ovšem nestačí.

Solární energie potřebuje zálohu. Nejen střídání dne a noci, ale i mnohadenní písečné bouře, jsou překážky, se kterými si solární energetika neví rady. Problém by vyřešily baterie, ovšem dopravit kilogram nákladu na Mars stojí dnes v nejlepším případě řádově miliony korun.

Pokud to tedy skutečně v dohledné době bude lidstvo myslet s „dobýváním“ Rudé planety vážně, mělo by zvažovat i další alternativy. Jednou takovou by mohly být jaderné reaktory. Částečně i proto, že se – byť se to o nich málo ví – ve vesmíru již osvědčily.

Snímek z testu reaktoru Kilopower připravovaného NASA. Konkrétně záběr pochází ze zkoušky přenosu tepla pomocí pasivního systému teplovodných trubek s tekutým sodíkem při pracovní teplotě více než 800 ˚C. (foto NASA Glenn)
Snímek z testu reaktor Kilopower připravovaného NASA. Konkrétně záběr pochází ze zkoušky přenosu tepla pomocí pasivního systému teplovodných trubek s tekutým sodíkem při pracovní teplotě více než 800 ˚C. (foto NASA Glenn)

Slabá generace

Na oběžných drahách kolem Země se totiž v současné době pohybují zhruba tři desítky vyloužilých jaderných reaktorů. A skutečně nemluvíme o radioizotopových zdrojích, jaké mají třeba sondy Voyager (o nich více v boxíku na stránce), ale o reaktorech, ve kterých probíhala štěpná reakce. Všechny reaktory nad našimi hlavami byly postaveny za studené války. Většinu z nich tvoří reaktory typu známého jako BES-5 (či „Buk“) na palubách dnes již vysloužilých sovětských špionážních družic.

Palivem pro jejich reaktory byl vysoce obohacený uran (90 procent tvořil aktivní izotop 235U), kterého bylo na zhruba od 30 do 45 kilogramů. Při hmotnosti 900 kilogramů reaktor vyráběl 100 kilowattů tepelné energie. Elektřina se z tepla vyráběla velmi neúčinně: využila se necelá dvě procenta. Na Zemi v reaktorech používáme turbíny, které mají účinnosti kolem 40 procent.

Ovšem ve vesmíru je zapotřebí něco jednoduššího než turbína. První, co konstruktéři mohli reálně použít, byla přímá přeměna tepla na elektřinu pomocí termoelektrického jevu. Ten využívá speciální polovodičový okruh, jehož jedna část je v teple (u jádra reaktoru) a druhá v chladu (chlazena s pomocí radiátoru, který vyzařuje teplo z okruhu do vesmíru). Čím větší je rozdíl v teplotách mezi oběma stranami, tím větší se vytváří napětí.

V případě Buku byl elektrický výkon Buku zhruba od 1,3 do 4 kW. V provozu mohl vydržet maximálně půl půl roku, v praxi to častěji bylo něco mezi čtyřmi až pěti měsíci – i z toho je patrné, že šlo o ryze vojenské zařízení, u kterého byly náklady a efektivita druhotné.

Dnes jsou reaktory odstaveny na tzv. parkovacích drahách zhruba necelých tisíc kilometrů nad povrchem, kde by měly zůstat ještě nejméně tisíce let – a v té době již jejich náklad nebude prakticky aktivní.

Trosky Kosmosu 954
Jedna ze sovětských špionážních družic s jaderným pohonem Kosmosu 954 se v lednu 1978 zřítila na území Kanady. Byl z toho menší diplomatický incident, který nakonec vyřešila alespoň částečně sovětská platba za práce spojené s vyhledáváním a likvidací materiálu. Na snímku je největší nalazený kus Kosmosu 954, který dostal přezdívku „paroží“. Šlo o součást řídícího systému reaktoru – trubkami se do něj spouštěly řídící tyče, které zpomalily štěpení. „Parohy“ nebyly nijak výrazně radioaktivní. Snímky jsou tak dramaticky barevné, protože díl obsahoval původně zhruba 50 kilogramů nápadně zbarvaného hydroxidu lithného, který zřejmě chránil elektroniku na palubě satelitu před radiací z reaktoru. (foto zpráva GEOSCAN)

Zlepšíme se!

Vývoj Bukem neskončil. SSSR do vesmíru v roce 1987 dostal i pokročilejší typ označovaný jako TOPAZ. Šlo o reaktor chlazený tekutým kovem (konkrétně slitinou sodíku a draslíku) s pracovní teplotou zhruba 610 °C (maximální teplota v aktivní zóně mohla být až třikrát vyšší). Vysoká teplota se využila při výrobě elektřiny, pomocí tzv. termionické přeměny.

Tento jev byl v roce 1893 objeven v Edisonových laboratořích, když jeho spolupracovníci zjistili, že některé materiály při velmi vysokých teplotách uvolňují elektrony, a de facto tedy přímo vyrábí z tepla elektřinu. Účinnost je o něco vyšší než u termoelektrických článků, ovšem pouze pokud jsou teploty dostatečně vysoké. Vyvinout materiály, které splní všechny nároky včetně odolnosti proti radiaci, není triviální a Sověti v tom ve své době velmi zajímavě pokročili.

Maketa jaderného reaktoru TOPAZ
Maketa jaderného reaktoru TOPAZ, který se do vesmíru dostal ve dvou exemplářích v druhé polovině 80. let. Maketa je umístěna v Polytechnickém muzeu v Moskvě. (foto собственная работа)

Díky zvýšení účinnosti výroby elektřiny na zhruba pět procent se snížila hmotnost celého reaktoru i paliva na palubě. TOPAZ s pouze 12 kilogramy uranového paliva dodával 5-10 kW údajně až po dobu jednoho roku při celkové hmotnosti 320 kilogramů.

Existovala již zmíněná vylepšená varianta TOPAZ-II, kterou pohřbil kolaps SSSR. Šlo o větší zařízení s 27 kilogramy paliva a celkovou hmotností kolem jedné tuny, které mělo zhruba stejné výkony (vyrábělo 135 kW tepla, 6 kW elektrických), ale mohlo pracovat až tři roky. V 90. letech krátce žila naděje, že by mohly letět ve spolupráci s cizinou, dokonce se několik zařízení na Západě intenzivně testovalo, údajně úspěšně. Let se ovšem žádný nekonal.

Inspirace ovšem ani v západních zemí nezapadla. Praktické pokroky v posledních letech nakonec učinily týmy v USA pod kuratelou NASA. O tom více v další části článku.

Kdy se před několika tisíci lety se poprvé roztočil někde na Středním východě první hrnčířský kruh, jeho autor ho nepochybně nevnímal jako zařízení na skladování energie. Ale je to tak – když ho hrnčíř roztočí, velká část jeho námahy v něm zůstala uložena a stačilo jen průběžně „doplňovat ztráty“, aby se kruh nepřestal točit a výroba nestála.

První kruhy nepochybně byly z dnešního hlediska nejspíše dosti nedokonalá zařízení. Princip využití setrvačnosti ke skladování energie používáme dodnes. Ale díky pokroku v jiných oblastech si může uplatnit i jinde než v hrnčířských kruzích.

Menší ztráty

V 19. století páry pomáhal svou kinetickou energií překonávat mrtvé body mechanismu parních strojů a dnes je poměrně běžnou součástí vyrovnávající chod všech druhů pístových spalovacích motorů, mechanických lisů a jiných strojů. Praxe je jednoduchá: setrvačník stačí jednoduše připojit se upevní na hřídel motoru, jehož energii potřebujeme akumulovat. Když výkon poklesne, setrvačník ho udrží v pohybu a skladovanou energii jednoduše vrací do systému.

Systémy navíc mají zajímavé výhody, které jiným metodám skladování energie chybí. Kola jsou nejen rychlá, ale také dokáží svou energii rychle předat: se zpožděním pouhých zlomků sekundy. Proto například našly využití v automobilech, které zpopularizoval systém KERS ve vozech Formule 1.

Setrvačník firmy Vovlov pro využití v osobních vozech (foto Volvo)
Setrvačník firmy Vovlov pro využití v osobních vozech (foto Volvo)

Nevýhodou je, že setrvačníky nemohou skladovat nijak ohromná množství energie bez enormního nárůstu hmotnosti či rychlosti. Hodí se tedy jako krátkodobá rezerva, ale na skladování většího množství energie už jsou nepraktické.

Například ve Švýcarsku zaváděli pokusně elektrické „gyrobusy“, tedy trolejbusy s jedenapůltunovým setrvačníkem pod podlahou na hřídeli. Ve stanici se autobus připojil ke stožáru a roztočil ho natolik, aby se akumulovalo asi 10 kilowatthodin (kWh) energie. Ta trolejbusu stačila na bezpečný dojezd k další zastávce, protože dojezd činil i v nejhorších městských podmínkách přes dva kilometry. Ale mohutný gyropskop zhoršuje jízdní vlastnosti, protože se přirozeně „valí“ ve směru rotace a nerad mění svůj „směr“ (přesněji rovinu rotace). Velké systémy se tedy ve vozidlech neuplatnily.

Nové využití?

V posledních několika desetiletích se zdálo, že „setrvačníky“ by si mohly najít nové využití. Díky rozšíření a poklesu cen materiálů a technologií vhodných pro výrobu velmi pevných setrvačníků s vysokou účinností se „roztočeným kolům“ zdály nabízet nové možnosti v oboru skladování energie.

Z materiálového hlediska je zajímavý především pokles cen uhlíkových vláken, které jsou pro takto namáhané díly ideálním materiálem. Další novinkou je širší využití vakua. Pokud se setrvačník točí ve vakuu, kolo se může roztočit kola do velmi vysokých otáček, což výrazně zvýší množství skladované kinetické energie. Energie roste s druhou mocninou rychlosti, zatímco v případě hmotnosti je to jen lineárně.

Cesta do praxe ovšem je obtížná. Proč a jak, to dobře ilustruje příklad společnosti Beacon Power, asi nejslavnějšího případu snahy o nasazení „hrnčířského kruhu“ v novém hávu v 21. století.

Do roku 1805 se datuje objev fyzikálního jevu, který vám nejspíše do dnešního dne unikal, ale přitom si ho můžete snadno vyzkoušet sami. Vděčíme za něj obyčejné gumě; v době prakticky zcela novému materiálu, který v průběhu 19. století přispěl k technickému a ekonomickému pokroku podobně jako třeba ocel nebo bavlna.

Na samém začátku století, v podstatě v době prvních experimentů s ním, si fyzikové všimli nečekané zvláštnosti: pokud gumu dostatečně natáhnete, ideálně na sedminásobek její klidové délky, tak se ohřeje. Změna sice není nijak ohromná, v podstatě o jednotky stupňů, ale je zcela jasně měřitelná.

Samozřejmě platí i opak: pokud nataženou gumu pustíte, zase vychladne. Při troše snahy si to můžete vyzkoušet sami, doporučujeme přitom přikládat gumičku na ret, ten je na rozdíly teplot extrémně citlivý.

Co se to děje?

Fyzikové děj nazývají elastokalorický proces. Je poměrně dobře známý, popsaný, ale v praxi nepříliš důležitý – i materiáloví vědci přiznávají, že ho znají spíše z učebnic. Většině laiků je zcela neznámý a nejspíše je pro jejich intuici poněkud matoucí: vždyť všichni víme, že stlačovaný plyn se zahřívá. Proč se gumička naopak při natahování zahřívá, a když ji pustíte, tak se ochladí?

Zdánlivě protichůdné jevy mají stejné vysvětlení: jde o projev změny entropie. To je dnes stále trochu módní a vágní slovo, ve fyzice má ovšem samozřejmě přesný význam. V podstatě se tím označuje, jak v daném místě (systému, řečeno fyzikálním žargonem) rozložená energie. Když je energie „rozpuštěná“ po okolí zcela rovnoměrně, je takzvaná termodynamická entropie vysoká. Když je energie rozložená nerovnoměrně, je entropie nízká.

Pokud tedy, dejme tomu, vezmete kompresor a část vzduchu z vašeho okolí natlačíte to nějaké nádoby, entropie ve vašem okolí se sníží. Část plynu jste totiž „srovnali“ do tlakové nádoby – což si ovšem vesmír nechce nechat líbit. Snížení entropie si vykompenzuje tím, že se zvýší teplota plynu – všechno proto, aby celková energie systému zůstala zachována.

V natažené gumičce se děje totéž, co ve stlačeném plynu – snižuje se „chaos“, tedy entropie. Molekuly gumy za běžného stavu jsou zamotané a míří všemi směry. Po natažení se srovnají ve směru natažení, „chaos“, tedy řečeno entropie, se sníží. Stejně jako v případě stlačeného plynu se v kompenzaci zvýší teplota. Při puštění gumy se situace obrátí: entropie se zvýší, teplota tedy sníží.

Gumové vlákno, které je pro názornost natřené barvou citlivou na teplotu, se při kroucení nejprve ohřeje. Když se nechá vychladnout a uvolní se, ochladí (foto: foto: Run Wang a spol.)
Gumové vlákno, které je pro názornost natřené barvou citlivou na teplotu, se při kroucení nejprve ohřeje. Když se nechá vychladnout a uvolní se, ochladí (foto: foto: Run Wang a spol.)

Nebudeme zabíhat na tomto místě do fyzikálních podrobností, a tak nám musíte bohužel prostě věřit, že to tak je. Existují různá přirovnání, která entropii přibližují, ale žádné ji nevystihuje úplně dobře. Entropii také nemůžete zažít na vlastní kůži; nemá žádný fyzický ekvivalent; není jako teplota ani tlak, a tak je těžko představitelná.

V rovnicích ovšem vychází zcela přirozeně, funguje skvěle a výsledky měření v reálném světě pak dávají výsledky přesně podle nich. (Ostatně, s tím, že svět prostě není pochopitelný jen „selským rozumem“ bez nějaké snahy navíc, jste se asi už smířili.)

Teď se asi ovšem již ptáte, co má toto poučování společného s ledničkou z titulku. Dovolte, abychom vám předem poděkovali za trpělivost a přešli konečně k věci.

Kroucené chlazení

V tuto chvíli je vám asi jasné, jak je možné využít natahování materiálu k chlazení (či naopak zahřívání, ale to nechejme stranou). Představte si pro jednoduchost například ledničku: umísíte do ní gumičku, která se při smrštění ochladí. Tím „vytáhne“ teplo z chladící kapaliny, která pak zamíří do chladícího prostoru. „Guma“ se pak může znovu natáhnout, nechat natažená, až zchladne (a zahřeje tedy vzduch v kuchyni, jak chladící mřížka na vaší dnešní ledničce). Pak můžete cyklus opakovat: načerpáte chladící kapalinu ke gumě, pustíte ji, aby se ochladila, a tak dále. Velmi podobně může fungovat například i klimatizace, či jiné systémy.

Pokud byste si dali tu práci a takový systém postavili, není to ovšem žádné terno. Dnešní lednice s kompresorovým chlazením jsou mnohem účinnější než „chlazení na gumu“ neboli, jak říkají fyzici: elastokalorický proces.

Pokud ovšem někdo nepřijde s nějakým zajímavým novým nápadem či zlepšením. Přesně to se mělo povést mezinárodnímu (převážně ovšem čínskému) týmu vědců, kteří v září v v časopise Science vydali článek popisující chladicí zařízení založené na elastokalorickém principu s rekordní účinností.

Výzkum je to opravdu hodně raný. Mohli bychom to přirovnat k pokusům o hledání nejvhodnějšího vlákna pro tepelnou žárovku. Na přelomu 19. a 20. století vynálezci, například v Edisonových laboratořích, žhavili nejrůznějších materilů od vousů (opravdu) přes různé kovy, až po nakonec úspěšné uhlíkaté materiály, z nichž se nakonec nejvíce osvědčila bambusová vlákna. Až po několika desetiletích je postupně vytlačila kovová vlákna, která pak převládala až do konce 20. století.

Stejně tak autoři nového výzkumu elastokalorického procesu zkoušeli různé materiály od gumy přes nylon a polyetylenový vlasec až po zinkovo-titanové dráty – a především, nový způsob jejich „pohonuů. Chtěli zjistit, zda není vhodnější (energeticky, ale i také třeba z čistě prostorových důvodů) „gumou“ kroutit, než ji natahovat.

Dnešní lednice s kompresorovým chlazením jsou mnohem účinnější než „chlazení na gumu“ neboli, jak říkají fyzici: elastokalorický proces.

Zvláště u některých materiálů byl rozdíl dosti významný: zdá se, že pokud má elastokalorické chlazení nějakou budoucnost, bude zřejmě právě v kroutivém pohybu. Změna teploty na povrchu gumového vlákna byla zhruba 20krát vyšší než při natažení stejnou silou. V případě nylonu byla teplotní změna na povrchu vlákna při kroucení 50krát větší než při natahování. Nylon ovšem není nijak „výkonný“ materiál, jde tedy o významný relativní nárůst, ne ovšem absolutní rekord – ten drží právě gumová vlákna.

Z hlediska praktického využití pak dávaly zajímavé výkony zinkovo-titanové dráty, které jsou velmi odolné a mají vysokou životnost. A navíc mohou rychle předávat teplo okolnímu materiálu.

Co z toho bude?

Ovšem přes nespornou zajímavost je zatím těžko předpokládat, že by vaše příští lednice byla na „gumičku“ – byť některá média tak výzkum minimálně v titulku „prodávala“ (včetně samotného časopisu Science v jeho zpravodajském článku).

Účinnost je sice z hlediska dosavadních výsledků v oboru zajímavá, ale nedosahuje úrovně dnešních kompresorových systémů. Navíc systém chlazení založený na elastokalorickém jevu by z podstaty musel obsahovat celou řadu pohyblivých dílů a lze tedy předpokládat, že by se sotva obešel bez poruch. Což by samozřejmě případnou údržbu jen prodražilo a zkomplikovalo.

Jak si asi také dokážete představit, problém může snadno představovat i únava materiálu. Chladicí dráty by musely za dobu životnosti lednice projít ohromným počtem cyklů „zamotávání“ a uvolňování. Autoři nového výzkumu použili sice slitinu s příměsí titanu, který se za vhodných podmínek téměř „neunavuje“. Ale je otázkou, zda systém s takovým materiálem může cenově konkurovat. A zda lze případně za titan najít vhodnou náhradu.

Zajímavé by mohlo být ovšem použití, které zmiňují autoři v samotné práci. Jev by se podle nich mohl využívat v „chytrých“ textiliích, ve kterých by změna teploty zakroucených vláken mohla například vyvolat změnu barvy.

Ovšem velkou revoluci v chladicí technice těžko předpokládat. Což neznamená, že se naše ledničky nebudou měnit a do budoucna nebudou využívat nějakých nových, pro nás laiky „exotických“ jevů. V posledních několika letech se třeba zvyšuje počet prodaných ledniček a mrazáků, které využívají takzvaného magnetického chlazení (magnetokalorický jev).

Magnety vedou

Podstata je podobná jako u jevu elastokalorického. Teplota materiálu se však nemění při kroucení či natahování, nýbrž v závislosti na okolním magnetickém poli. Nějaké změny teplot se projevují prakticky na všech magnetech, ale postupně se daří objevovat nové látky, ve kterých jsou změny výraznější.

V roce 2014 byl například oznámen objev třídy materiálů, u kterých jsou změny teplot obří (to je v tomto případě terminus technicus, hovoří se o takzvaném obřím či gigantickém magnetokalorickém jevu). Jde o některé slitiny gadolinia, tedy kovu ze skupiny kovů vzácných zemin (patří mezi lanthanoidy).

Nyní se zdá v podstatě jisté, že tento typ chlazení bude stále rozšířenější a nakonec převládne. Má jasné výhody: chladicí systémy na tomto principu mohou být malé, účinné a jednoduché. To zatím „gumičkové“ chlazení o sobě rozhodně říci nemůže.

Ovšem právě příklad „magnetického chlazení“ také ukazuje, že objev nové skupiny látek s novými vlastnostmi může počty poměrně výrazně změnit, a tak v tuto chvíli nedokážeme říci, zda lednička na pružinu skutečně zůstane spíše vědeckou kuriozitou, nebo si nakonec v nějaké podobě najde do praxe.

Jedním z nejlepších nabízejících se řešení otázky, jak uložit elektřinu na pozdější použití, je stlačený vzduch. Problémem je ovšem vznikající „odpad“.

Pfff! Hlasitý zvuk nafouknutého balónku, který vypustíte ze svých prstů, není jen zábava, ale možná také pozvánka do blízké energetické budoucnosti. Energie skrytá ve stlačeném plynu by možná mohla sloužit ke skladování jinak nevyužitelné elektřiny.

Stejně jako nafukovací balónky, není ani nápad na využití téhle „baterie“ nijak nový. Experimentovalo se s ním už na konci 19. století. Ale byť byla energie tehdy velmi drahá a například cena elektřiny byla v přepočtu na kupní sílu nejméně o dva řády vyšší než dnes, skladování energie ve vzduchu se ale nakonec neukázalo být ve velkém měřítku ekonomicky výhodné. Z fyzikálního hlediska má potenciál, ale stávající technologie ho pro energetické potřeby nedokázala použít.

Protože má technologie zdravý fyzikální základ, řada odborníků si na ni vzpomněla, když se v posledních letech začalo mluvit znovu o možnostech „nových“ systémů skladování energie. Jejím ztělesněním se stala například auta „na vzduch“, tedy vozy s nádržemi a motory na stlačený vzduch.

Myšlenka to není sama o sobě zcela nesmyslná, podobné vozy mají stejný problém jako dnešní elektromobily: mají malý dojezd. V případě “aut na vzduch” je ovšem problém ještě výrazně větší, nádrže u těch několika mála postavených vozů stačí sotva na pár desítek kilometrů jízdy.

Dnes je technologie na úrovni demonstračních kusů a laboratorních kusů například pro studentské projekty, včetně třeba studentských závodů. Nejlepší závodní speciály mají dojezd kolem deseti kilometrů na vzduchovou láhev s objemem deset litrů a jezdí rychlostí až kolem 50 kilometrů v hodině.

První elektrárna se stlačeným vzduchem vznikla v Německu i kvůli nastartování jaderných elektráren, v případě úplného výpadku proudu.

Vzduch ve velkém

Stlačený vzduch se téměř určitě nestane hlavním pohonným systémem automobilů. Spíše může v kombinaci s jinými pohony posloužit jako doplňková, podpůrná technologie, která pomůže snížit spotřebu a emise.

Slibnější budoucnost by vzduch mohl mít ve větším měřítku, kde nehrají takovou roli rozměry a hmotnost nádrží. Elektrárny nikam nejezdí, a tak je těžké nádrže neomezují. Na některých místech se dokonce nabízejí vhodné skladovací prostory za poměrně nízké ceny – opuštěné doly.

Koncept elektráren na stlačený vzduch je jednoduchý. V době přebytku elektrické energie, tedy třeba v noci či během větrných a slunečných dnů s malou spotřebou (např. o víkendech), se levná elektrická energie využije pro pohon kompresoru. Vícestupňovými kompresory je nasátý atmosférický vzduch stlačen a uložen pod tlakem (5–7,5 MPa) v podzemní jeskyni. Když poptávka převýší nabídku energie, je vzduch vypouštěn z jeskyně a přivádí se na turbínu, která vyrábí elektrickou energii.

V praxi ovšem fyzikální zákony princip komplikují. Hlavní komplikací je vznikající odpadní teplo, které vzniká při stlačování každého plynu a které je z hlediska skladování elektřiny jen ztracenou energií. Během stlačování se kvůli tomu vzduch ochlazuje, aby nedošlo buď k přehřátí „nádrže“, nebo stěn případného podzemního zásobníku.

Po vypuštění ze zásobníku se při expanzi naopak zchladí natolik, že se před vypuštěním do turbíny raději ohřívá spalováním fosilních paliv. Ohřev má několik důvodů: zvyšuje výkon turbíny a také brání před poškozením zařízení příliš nízkými teplotami, na něž se při expanzi stlačený vzduch ochlazuje.

Takhle by měl vypadat provoz schopný uskladnit 250 MWh energie ve zkapalněném vzduchu
Takhle by měl vypadat provoz schopný uskladnit 250 MWh energie ve zkapalněném vzduchu (kredit: Highview Power)

Zatím neoslnila

První elektrárna využívající stlačeného vzduchu na světě byla uvedena do provozu roku 1978 v německém Huntorfu poblíž Brém. Tato 290MW elektrárna byla postavena, aby poskytovala energii při úplných výpadcích sítě jaderným elektrárnám poblíž Severního moře (black-start funkce) a aby byla zdrojem levné špičkové energie.

Původně byla elektrárna navržena se skladovacím objemem, který zajišťoval dodávku plného výkonu po dobu dvou hodin. Postupně byla elektrárna provozně upravena, aby poskytovala výkon 290 MW po dobu tří hodin, a čím dál víc byla používaná ke kompenzaci výkyvů dodávek elektrické energie z větrných elektráren umístěných na severu Německa.

Elektrárna má nejjednodušší oběh bez rekuperátoru, takže vysoká teplota spalin za turbínou zůstává nevyužita. Projevuje se to na nízké celkové účinnosti provozu, která činí jen něco málo přes 40 %. Více než polovina elektřiny vyrobené v době přebytku tak přijde vniveč. Rekuperátor tepla není součástí designu, protože bez něj je elektrárna rychleji připravena najet do provozu, a lépe tedy plní funkci rychlého záložního zdroje.

Druhou dnes používanou elektrárnou tohoto typu je provoz ve státě Alabama ve městě McIntosh, fungující od roku 1991. Elektrárna má oběh s rekuperátorem a dodává do sítě výkon 110 MW po dobu 26 hodin. Účinnost skladování se pohybuje těsně nad 50 %.

Ani jeden z provozů neměl tak úžasné výsledky, aby koncept dokázal, že už je připravený k nástupu do praxe. Ale ukázaly alespoň, že nějaký rekuperační systém je při dnešním stavu techniky zapotřebí, jinak je účinnost celého procesu příliš malá, než aby se dalo uvažovat o jeho ekonomickém využití.

Přesto se našlo několik společností, které se pokouší v oboru prorazit. To je ovšem téma na jisté texty.

V předchozí části našeho článku jsme popsali princip „superchladivých“ materiálů, které se dokáží uchladit i na přímém slunečním světle. Také jsme popsali práci týmu, který dal nakonec vzniknout společnost SkyCool Systems.

V tomto díle se budeme věnovat jejich jiež existující i potenciální konkurenci.

V jednoduchosti je síla

Zajímavý byl především projekt skupiny z Coloradské univerzity, jehož výsledky byly zveřejněny v roce 2017. Jejich materiál byl za prvé účinnější, protože z jednoho metru čtverečního povrchu dokázal během praktického pokusu vyzářit více energie, a tedy účinněji chladil: místo 40 W/m2 vyzářil i během poledne 93 W/m2.

Především však byl použitý materiál levný, a lze ho poměrně jednoduše tisknout (roll-to-roll) s nízkými náklady. Skupina totiž pracovala s levnými materiály, plastem a skleněnými kuličkami o průměru jednotek mikrometrů, protože ty při této velikosti silně září v oblasti 8–13 mikrometrů.

Tento i další pokusy ukazují, že materiál, který sálá proti obloze i během dne, lze vytvořit z levných ingrediencí. Je to dané tím, že v žádoucí oblasti infračerveného spektra sálá molekul s relativně běžnými chemickými vazbami (například uhlík-uhlík či uhlík-fluor), které jsou běžnou součástí řady polymerů, tedy velký molekul, tzv. makromolekul.

Stejný objem dřeva v přirozeném stavu (vlevo) a po přepracování na "chladivé dřevo"
Stejný objem dřeva v přirozeném stavu (vlevo) a po přepracování na “chladivé dřevo” (foto: Liangbing Hu InventWood)

Coloradský tým toho využil k vytvoření „superchladivého“ dřeva. I to obsahuje makromolekuly, které vyzařují ve vhodné části spektra. Bylo ho „pouze“ nutné zbavit klíčové molekuly, ligninu, jež mu dává barvu, vzniklo bílé dřevo, které se ani na slunci téměř nezahřívá.

Ovšem lignin zajišťuje mimo jiné rovněž pevnost dřeva, a pak materiál je nutné ještě stlačit, aby došlo ke srovnání vláken ve dřevě a zvýšila se jeho schopnost zářit v infračerveném spektru (tj. zbavovat se přebytečného tepla).

Kdo to postaví

Hned několik výzkumných skupin v současné době spolupracuje s firmami na možné komercializaci nápadu v různých podobách, od hliníkových panelů po nátěry, které také ve zvýšené míře odrážejí světlo. Vědci dokonce založili malou firmu, která chce prosadit do praxe „superchladivé“ dřevo.

Jedním problémem „superchladivých“ materiálů na budovách je, že v chladnějším klimatu by během zimy mohly zvyšovat náklady na topení. Existují různé nápady, jak tomu čelit. Jeden start-up navrhuje vyplnit póry v materiálu izopropanolem, což v důsledku zcela změní vlastnosti materiálu, a ten začne teplo naopak pohlcovat. Ale problém i jeho řešení zatím existují pouze na papíře.

Další velkou neznámou je přístup možných zákazníků, kteří jsou leckdy k možným úsporám energie nečekaně hluší. Ani v teplém klimatu není všeobecným zvykem důsledně využívat na budovy reflexních bílých barev, které odrážejí přicházející sluneční záření. Nemluvě o případné pravidelné obnově nátěru. Pravda, sálavé materiály použitelné i v přímém slunečním světle mohou možné úspory výrazně navýšit, to samo o sobě úspěch nezaručuje.

Ovšem fyzikové mají čas. „Superchladivé“ materiály jsou stále ještě velmi mladé a nezralé. Možná že nakonec najdou zcela jiné využití, než jejich autoři původně předpokládali, ale je těžké si představit, že tak šikovný „trik“ si nenajde vůbec žádné.

Druhý, závěrečn část textu. První díl najdete na této stránce.

Načíst další